Abstract
Carbon fiber-reinforced plastics (CFRPs) possess pronounced anisotropic properties, necessitating advancements in through-thickness electrical conductivity and other functionalities without compromising mechanical integrity. MXenes, as an emerging family of two-dimensional nanomaterials, have demonstrated significant potential for enhancement modification in this area. However, achieving uniform distribution and effective utilization on a large scale with low filler content has posed a significant challenge. Herein, a highly lightweight, flexible, and functional Ti3C2Tx/ poly(3,4-ethylene-dioxythiophene) poly (styrene sulfonate) (PEDOT: PSS) /Ammonium polyphosphate (APP) reclaimed carbon fiber (rCF) veil reinforced plastics (MPA-rCFRPs) was fabricated through large-scale vacuum-assisted filtration and autoclave technology. The modified MPA-rCFRPs have exhibited substantial improvements in electromagnetic shielding with MXene additive amounts as low as 0.24 %–1.07 %, increasing the electro-magnetic interference shielding effectiveness (EMI SE) to 87.12 dB, improved by 350.02 %. Remarkably, the through-thickness electrical conductivity of MPA-rCFRPs exhibited a 767.14 % improvement, escalating from 19.73 S/m to 151.41 S/m. Meanwhile, the modified composites have exhibited enhanced photothermal, electrothermal, and flame-retardant properties, and the above improvements have not shown a significant impact on the mechanical properties of the material. This work represents a practical solution for the construction of large-scale MXene-based carbon fiber composites and opens the door to functional reutilization of rCF materials.
Original language | English |
---|---|
Pages (from-to) | 189-199 |
Number of pages | 11 |
Journal | Journal of Materials Science and Technology |
Volume | 228 |
DOIs | |
Publication status | Published - 1 Sept 2025 |
Keywords
- Electromagnetic interference shielding
- Flame retardant
- MXene
- PEDOT: PSS
- Reclaimed carbon fiber
- TiCT
ASJC Scopus subject areas
- Ceramics and Composites
- Mechanics of Materials
- Mechanical Engineering
- Polymers and Plastics
- Metals and Alloys
- Materials Chemistry