Preparation of Catalyst from Phosphorous Rock Using an Improved Wet Process for Transesterification Reaction

Yunshan Wang, Mingzhu Tang, Abubakar Yusuf, Yixao Wang, Xiyue Zhang, Gang Yang, Jun He, Huan Jin, Yong Sun

Research output: Journal PublicationArticlepeer-review

12 Citations (Scopus)


Gypsum (CaSO4·2H2O) with active catalytic performance was prepared from phosphorous rock through an improved clean wet process. The impact of the preparation conditions was extensively analyzed to identify the statistical significance toward the compositions of the prepared gypsum and catalytic performances during the transesterification reaction. The prepared catalyst predominantly contains CaSO4 (93%) with contaminations of silica (5%), P2O5 (0.25%), Fe2O3 (0.52%), Al2O3 (0.24%), and TiO2 (0.12%). Heavy-metal oxides, that is, Cr2O3, PbO, and CuO, were not detected from the prepared catalyst. The contaminants in gypsum are in the form of complicated composites such as SiO2, (Na2, K2)SiF6, MgF2, AlF3, Ca5(PO4)3F, and Ca3(PO4)2. The significant operational parameters, namely, the crystallization temperature and duration toward the catalytic performance, were identified by ANOVA. The Brönsted acidic sites from the ionic S and O, which might be in the form of S-⃛O or S═O as the surface functional groups, attribute to transesterification catalysis. The theoretical simulation suggests that different ionic sulfates might co-exist on the surface of crystallite gypsum. The transport of reagents to the surface of catalytic sites also plays an important role under the investigated experimental conditions. The reusability study indicates an approximate 10% deactivation after the reaction.

Original languageEnglish
Pages (from-to)8094-8107
Number of pages14
JournalIndustrial and Engineering Chemistry Research
Issue number22
Publication statusPublished - 9 Jun 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Preparation of Catalyst from Phosphorous Rock Using an Improved Wet Process for Transesterification Reaction'. Together they form a unique fingerprint.

Cite this