Morphology and electrical properties of short carbon fiber-filled polymer blends: High-density polyethylene/ poly (methyl methacrylate)

Cheng Zhang, Xiao Su Yi, Hiroshi Yui, Shigeo Asai, Masao Sumita

Research output: Journal PublicationArticlepeer-review

96 Citations (Scopus)

Abstract

Morphology and electrical properties of short carbon fiber-filled high-density polyethylene (HDPE)/poly(methyl methacrylate)(PMMA) polymer blends have been studied. The percolation threshold of HDPE50/PMMA50 blends filled with vaporgrown carbon fiber (VGCF), 1.25 phr VGCF content, is much lower than those of the individual polymers. The SEM micrographs verified that the enhancement of conductivity could be attributed to the selective location of VGCF in the HDPE phase. A double percolation is the basic requirement for the conductivity of the composites, i.e., the percolation of carbon fibers in the HDPE phase and the continuity of this phase in the blends, which hereby are defined as the first percolation and the second percolation, respectively. The SEM micrographs also showed that the short carbon fibers could affect the morphology of the blends. With the increase of VGCF content, the HDPE domains are elongated from spherical into strip shape, finally develop to a continuous structure. As a result, the second percolation threshold of the blends filled with 2.5 phr VGCF, 20 wt % HDPE, is lower than that of the blends filled with 1.5 phr VGCF, 30 wt % HDPE. The influence of molding temperature and time on the second percolation threshold has also been investigated. For the composites molded at a lower temperature, the second percolation threshold is shifted to a higher VGCF content, but there is little influence of molding time on the second percolation threshold.

Original languageEnglish
Pages (from-to)1813-1819
Number of pages7
JournalJournal of Applied Polymer Science
Volume69
Issue number9
DOIs
Publication statusPublished - 29 Aug 1998
Externally publishedYes

Keywords

  • Double percolation
  • Electrical properties
  • Morphology
  • Polymer blends
  • Selective location of filier
  • Short carbon fiber

ASJC Scopus subject areas

  • General Chemistry
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Morphology and electrical properties of short carbon fiber-filled polymer blends: High-density polyethylene/ poly (methyl methacrylate)'. Together they form a unique fingerprint.

Cite this