Abstract
In this paper, the microstructure and thermophysical properties of two CoNiCrAl bond coat alloys with differing Al contents were investigated. Two CoNiCrAl alloys with compositions of Co-31.7%Ni-20.8Cr-10Al and Co-31.7%Ni-20.8Cr-12Al (all in wt%) were prepared by vacuum induction melting and casting. The microstructure of the as-cast CoNiCrAl alloys was characterised by scanning electron microscopy (SEM), X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD). The phase changes of the CoNiCrAl alloys as a function of temperature were studied by differential scanning calorimetry (DSC). Thermophysical properties such as thermal conductivity, thermal diffusivity and thermal expansion were evaluated. The as-cast CoNiCrAl alloys exhibited a two-phase structure, consisting of the Al-rich BCC β phase and Co and Ni-rich FCC γ phase. It was found that the β-phase fraction increased with the overall Al content in the alloy. A two-stage thermal expansion was noted for both CoNiCrAl alloys. In addition, it was shown that the CoNiCrAl alloy with the higher Al content exhibited a lower thermal expansion coefficient at high temperatures. This is because more β phase was formed in the CoNiCrAl-12 alloy, resulting in a reduced thermal expansion coefficient.
Original language | English |
---|---|
Article number | 165575 |
Journal | Journal of Alloys and Compounds |
Volume | 918 |
DOIs | |
Publication status | Published - 15 Oct 2022 |
Keywords
- CoNiCrAlY bond coat
- Microstructure
- Phase distribution
- Thermophysical properties
- β-phase
ASJC Scopus subject areas
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry