Abstract
This paper investigates the microstructure evolution of Al-TiB2 coatings prepared by cold spraying. In situ Al-TiB2 composite powders containing uniformly distributed titanium diboride (TiB2) particles with a size range of 5–100 nm in the Al matrix and Al/Al-TiB2 blended powders were used as the cold spray feedstock for coating fabrication on aluminium alloy substrates. The microstructures of the feedstock powders and as-deposited coatings were characterised using scanning electron microscopy with energy dispersive X-ray analysis and X-ray diffraction. Al/Al-TiB2 blended powder coatings, compromising closely packed powder particles, were sprayed to an approximate thickness of 500 μm. Al-TiB2 composite coatings (approximately 50 μm thick) were obtained retaining the microstructure of the composite powders being sprayed and no evidence of detrimental phase transformation was found. However, micro-cracks were found to exist in the Al-TiB2 coating due to the hardly deformable powder particles. Little or no microstrain was revealed in the as-sprayed Al-TiB2 coating, indicating that annealing may have occurred due to the localised adiabatic heating during the spraying process. It is demonstrated that it is possible to fabricate the Al-TiB2 composite coating by cold spray deposition but further improvements to eliminate coating cracking are required.
Original language | English |
---|---|
Pages (from-to) | 1044-1052 |
Number of pages | 9 |
Journal | Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications |
Volume | 233 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 2019 |
Keywords
- Al-TiB
- Aluminium matrix composite
- Cold spray
- Cracking
- Microstrain
ASJC Scopus subject areas
- General Materials Science
- Mechanical Engineering