TY - JOUR
T1 - Elaborate Modulating Binding Strength of Intermediates via Three-component Covalent Organic Frameworks for CO2 Reduction Reaction
AU - Liu, Minghao
AU - Cui, Cheng Xing
AU - Yang, Shuai
AU - Yang, Xiubei
AU - Li, Xuewen
AU - He, Jun
AU - Xu, Qing
AU - Zeng, Gaofeng
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/5/13
Y1 - 2024/5/13
N2 - The catalytic performance for electrocatalytic CO2 reduction reaction (CO2RR) depends on the binding strength of the reactants and intermediates. Covalent organic frameworks (COFs) have been adopted to catalyze CO2RR, and their binding abilities are tuned via constructing donor-acceptor (DA) systems. However, most DA COFs have single donor and acceptor units, which caused wide-range but lacking accuracy in modulating the binding strength of intermediates. More elaborate regulation of the interactions with intermediates are necessary and challenge to construct high-efficiency catalysts. Herein, the three-component COF with D-A-A units was first constructed by introducing electron-rich diarylamine unit, electron-deficient benzothiazole and Co-porphyrin units. Compared with two-component COFs, the designed COF exhibit elevated electronic conductivity, enhanced reducibility, high efficiency charge transfer, further improving the electrocatalytic CO2RR performance with the faradic efficiency of 97.2 % at −0.8 V and high activity with the partial current density of 27.85 mA cm−2 at −1.0 V which exceed other two-component COFs. Theoretical calculations demonstrate that catalytic sites in three-component COF have suitable binding ability of the intermediates, which are benefit for formation of *COOH and desorption of *CO. This work offers valuable insights for the advancement of multi-component COFs, enabling modulated charge transfer to improve the CO2RR activity.
AB - The catalytic performance for electrocatalytic CO2 reduction reaction (CO2RR) depends on the binding strength of the reactants and intermediates. Covalent organic frameworks (COFs) have been adopted to catalyze CO2RR, and their binding abilities are tuned via constructing donor-acceptor (DA) systems. However, most DA COFs have single donor and acceptor units, which caused wide-range but lacking accuracy in modulating the binding strength of intermediates. More elaborate regulation of the interactions with intermediates are necessary and challenge to construct high-efficiency catalysts. Herein, the three-component COF with D-A-A units was first constructed by introducing electron-rich diarylamine unit, electron-deficient benzothiazole and Co-porphyrin units. Compared with two-component COFs, the designed COF exhibit elevated electronic conductivity, enhanced reducibility, high efficiency charge transfer, further improving the electrocatalytic CO2RR performance with the faradic efficiency of 97.2 % at −0.8 V and high activity with the partial current density of 27.85 mA cm−2 at −1.0 V which exceed other two-component COFs. Theoretical calculations demonstrate that catalytic sites in three-component COF have suitable binding ability of the intermediates, which are benefit for formation of *COOH and desorption of *CO. This work offers valuable insights for the advancement of multi-component COFs, enabling modulated charge transfer to improve the CO2RR activity.
KW - carbon dioxide reduction
KW - covalent organic frameworks
KW - donor-acceptor structure
KW - electron transfer
KW - three-component reaction
UR - http://www.scopus.com/inward/record.url?scp=85189915433&partnerID=8YFLogxK
U2 - 10.1002/anie.202401750
DO - 10.1002/anie.202401750
M3 - Article
C2 - 38407379
AN - SCOPUS:85189915433
SN - 1433-7851
VL - 63
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 20
M1 - e202401750
ER -