User profile preserving social network embedding

Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

81 Citations (Scopus)

Abstract

This paper addresses social network embedding, which aims to embed social network nodes, including user profile information, into a latent low-dimensional space. Most of the existing works on network embedding only consider network structure, but ignore user-generated content that could be potentially helpful in learning a better joint network representation. Different from rich node content in citation networks, user profile information in social networks is useful but noisy, sparse, and incomplete. To properly utilize this information, we propose a new algorithm called User Profile Preserving Social Network Embedding (UPP-SNE), which incorporates user profile with network structure to jointly learn a vector representation of a social network. The theme of UPP-SNE is to embed user profile information via a nonlinear mapping into a consistent subspace, where network structure is seamlessly encoded to jointly learn informative node representations. Extensive experiments on four real-world social networks show that compared to state-of-the-art baselines, our method learns better social network representations and achieves substantial performance gains in node classification and clustering tasks.

Original languageEnglish
Title of host publication26th International Joint Conference on Artificial Intelligence, IJCAI 2017
EditorsCarles Sierra
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3378-3384
Number of pages7
ISBN (Electronic)9780999241103
DOIs
Publication statusPublished - 2017
Externally publishedYes
Event26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, Australia
Duration: 19 Aug 201725 Aug 2017

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume0
ISSN (Print)1045-0823

Conference

Conference26th International Joint Conference on Artificial Intelligence, IJCAI 2017
Country/TerritoryAustralia
CityMelbourne
Period19/08/1725/08/17

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'User profile preserving social network embedding'. Together they form a unique fingerprint.

Cite this