Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash

Yong Sun, Vinay Parikh, Lian Zhang

Research output: Journal PublicationArticlepeer-review

65 Citations (Scopus)


The use of an industry waste, brown coal fly ash collected from the Latrobe Valley, Victoria, Australia, has been tested for the post-combustion CO 2 capture through indirect minersalization in acetic acid leachate. Upon the initial leaching, the majority of calcium and magnesium in fly ash were dissolved into solution, the carbonation potential of which was investigated subsequently through the use of a continuously stirred high-pressure autoclave reactor and the characterization of carbonation precipitates by various facilities. A large CO 2 capture capacity of fly ash under mild conditions has been confirmed. The CO 2 was fixed in both carbonate precipitates and water-soluble bicarbonate, and the conversion between these two species was achievable at approximately 60°C and a CO 2 partial pressure above 3bar. The kinetic analysis confirmed a fast reaction rate for the carbonation of the brown coal ash-derived leachate at a global activation energy of 12.7kJ/mol. It is much lower than that for natural minerals and is also very close to the potassium carbonate/piperazine system. The CO 2 capture capacity of this system has also proven to reach maximum 264kg CO 2/tonne fly ash which is comparable to the natural minerals tested in the literature. As the fly ash is a valueless waste and requires no comminution prior to use, the technology developed here is highly efficient and energy-saving, the resulting carbonate products of which are invaluable for the use as additive to cement and in the paper and pulp industry.

Original languageEnglish
Pages (from-to)458-466
Number of pages9
JournalJournal of Hazardous Materials
Publication statusPublished - 30 Mar 2012
Externally publishedYes


  • CO sequestration
  • Mineralization
  • Vitorian brown coal fly ash

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash'. Together they form a unique fingerprint.

Cite this