Secure and Reliable Indoor Localization Based on Multitask Collaborative Learning for Large-Scale Buildings

Chun Wang, Juan Luo, Xuan Liu, Xiangjian He

Research output: Journal PublicationArticlepeer-review

17 Citations (Scopus)


Accurate and reliable indoor location estimate is crucial for many Internet-of-Things (IoT) applications in the era of smart buildings. However, the positioning accuracy and security of the existing positioning works cannot meet the demands in the large-scale smart buildings scenarios covering multiple multifloor buildings. Therefore, in this article, we focus on the reliable and accurate localization under multibuilding and multifloor environments. We propose two novel designs, including a two-step reliable feature selector and a multitask collaborative positioning model. First, we design a two-step reliable feature selector based on an access point (AP) confidence model and manifold learning, to help select the most representative and reliable fingerprint features. Second, we propose a multitask cooperative positioning model, which consists of a multiscale feature fusion module to adaptively fuse multiscale features and a multitask joint learning module to effectively constrain the cumulative error of multiscale position. Finally, based on the above two, we propose a reliable multibuilding and multifloor localization method (RMBMFL), which can achieve accurate and reliable location estimates with low computational complexity in a smart building complex. We did real-world experiments in a 20 000 ${m^{2}}$ site that covers three multistory buildings to evaluate the performance of the proposed RMBMFL. The experimental results show that RMBMFL achieves a building identification accuracy and a floor identification accuracy of 99%, and a room-level indoor localization with an average positioning error within 2 m, and outperforms state-of-the-art solutions.

Original languageEnglish
Pages (from-to)22291-22303
Number of pages13
JournalIEEE Internet of Things Journal
Issue number22
Publication statusPublished - 15 Nov 2022
Externally publishedYes


  • Attention
  • Wi-Fi fingerprint
  • multibuilding/multifloor
  • multiscale feature fusion
  • multitask learning
  • reliable indoor localization
  • smart buildings

ASJC Scopus subject areas

  • Signal Processing
  • Information Systems
  • Hardware and Architecture
  • Computer Science Applications
  • Computer Networks and Communications


Dive into the research topics of 'Secure and Reliable Indoor Localization Based on Multitask Collaborative Learning for Large-Scale Buildings'. Together they form a unique fingerprint.

Cite this