Red lesion detection in retinal fundus images using Frangi-based filters

Ruchir Srivastava, Damon W.K. Wong, Lixin Duan, Jiang Liu, Tien Yin Wong

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

40 Citations (Scopus)

Abstract

This paper presents a method to detect red lesions related to Diabetic Retinopathy (DR), namely Microaneurysms and Hemorrhages from retinal fundus images with robustness to the presence of blood vessels. Filters based on Frangi filters are used for the first time for this task. Green channel of the input image was decomposed into smaller sub images and proposed filters were applied to each sub image after initial preprocessing. Features were extracted from the filter response and used to train a Support Vector Machine classifier to predict whether a test image had lesions or not. Experiments were performed on a dataset of 143 retinal fundus and the proposed method achieved areas under the ROC curve equal to 0.97 and 0.87 for Microaneurysms and Hemorrhages respectively. Results show the effectiveness of the proposed method for detecting red lesions. This method can help significantly in automated detection of DR with fewer false positives.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5663-5666
Number of pages4
ISBN (Electronic)9781424492718
DOIs
Publication statusPublished - 4 Nov 2015
Externally publishedYes
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 25 Aug 201529 Aug 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period25/08/1529/08/15

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Red lesion detection in retinal fundus images using Frangi-based filters'. Together they form a unique fingerprint.

Cite this