Abstract
The photochemistry of (η5;-C4H 4Se)Cr(CO)3 was investigated by matrix isolation, time-resolved infrared spectroscopy, and steady-state photochemical methods. Density functional theory (DFT) was used to assist in the identification of the photoproducts. Irradiation (λexc= 406 nm) of (η5-C4H4Se)Cr(CO)3 in either an Ar or CH4 matrix at 20 K produced the selenophene ring-opened insertion product (C,Se-C4H4Se)Cr(CO)3. Further irradiation of this matrix produced the CO-loss species (C,Se-C 4H4Se)Cr(CO)2. Pulsed irradiation at 400 nm produced the CO-loss species (η5-C4H 4Se)Cr(CO)2(S) in n-heptane (S) along with the insertion products (C,Se-C4H4Se)Cr(CO)3 and (C,Se-C 4H4Se)Cr(CO)2, both of which may have triplet character. Time-resolved measurements on the microsecond time scale confirmed that the CO-loss species (η5-C4H4Se)Cr(CO) 2(S) reacts with CO (k2 = 5.8 × 106 dm3 mol-1 s-1 at 298 K), while (C,Se-C4H 4Se)Cr(CO)3 and (C,Se-C4H4Se)Cr(CO) 2 do not react on this time scale. DFT calculations provide an explanation of the stability of the triplet (C,Se-C4H 4Se)Cr(CO)3 species in terms of a chromaselanabenzene structure, which is consistent with previously observed metal insertion into coordinated selenophene ligands.
Original language | English |
---|---|
Pages (from-to) | 3671-3680 |
Number of pages | 10 |
Journal | Organometallics |
Volume | 27 |
Issue number | 15 |
DOIs | |
Publication status | Published - 11 Aug 2008 |
Externally published | Yes |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry