Abstract
LDS dyes were doped into zirconia-organically modified silicate (ORMOSIL) materials prepared by low temperature sol-gel technique. Embedded channel waveguides were fabricated using wet etching of glass substrates followed by deposition of the LDS 925-doped zirconia-ORMOSIL in the channel. Near infrared distributed feedback (DFB) laser action was induced in the LDS 925-doped sol-gel channel waveguide. Narrow line-width (<0.5 nm) tuning of the output wavelength was achieved by varying the period of the gain modulation generated by a nanosecond neodymium:YAG laser at 532 nm. Tuning range was from 787 nm to 933 nm. The dispersion behavior of the laser output was checked by comparing experiments with the predictions of Marcatili's theory. Additionally, near infrared (NIR) wide-band tuning and high-order DFB lasing operation were realized in LDS dye-doped planar waveguides.
Original language | English |
---|---|
Pages (from-to) | 1643-1650 |
Number of pages | 8 |
Journal | Optics Express |
Volume | 13 |
Issue number | 5 |
DOIs | |
Publication status | Published - Mar 2005 |
Externally published | Yes |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics