Fluidization of nano and sub-micron powders using mechanical vibration

Souresh Kaliyaperumal, Shahzad Barghi, Lauren Briens, Sohrab Rohani, Jesse Zhu

Research output: Journal PublicationArticlepeer-review

43 Citations (Scopus)

Abstract

The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart's classification was studied in a mechanically vibrated fluidized bed (vibro-fluidized bed) at room temperature. Pretreated air was used as the fluidizing gas whereas SiO2, Al2O3, TiO 2, ZrSi, BaSO4 were solid particles. Mechanical vibration amplitudes were 0.1, 0.25, 0.35, 0.45 mm, while the frequencies were 5, 20, 30, 40 Hz to investigate the effects of frequency and amplitude of mechanical vibration on minimum fluidization velocity, bed pressure drop, bed expansion, and the agglomerate size and size distribution. A novel technique was employed to determine the apparent minimum fluidization velocity from pressure drop signals. Richardson-Zaki equation was employed as nano-particles showed fluid like behavior when fluidized. The average size of agglomerates formed on top of the bed was smaller than those at the bottom. Size distribution of agglomerates on top was also more uniform compared to those near the distributor. Larger agglomerates at the bottom of the bed formed a small fraction of the bed particles. Average size of submicron agglomerates decreased with increasing the frequency of vibration, however nano particles were less sensitive to change in vibration frequency. Mechanical vibration enhanced the quality of fluidization by reducing channeling and rat-holing phenomena caused by interparticle cohesive forces.

Original languageEnglish
Pages (from-to)279-287
Number of pages9
JournalParticuology
Volume9
Issue number3
DOIs
Publication statusPublished - Jun 2011
Externally publishedYes

Keywords

  • Agglomeration
  • Fluidization
  • Minimum fluidization velocity
  • Nanoparticles
  • Submicron particle
  • Vibro-fluidized bed

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Fluidization of nano and sub-micron powders using mechanical vibration'. Together they form a unique fingerprint.

Cite this