Designing of Te-doped ZnO and S-g-C3N4 /Te-ZnO nano-composites as excellent photocatalytic and antimicrobial agents

Misbah Umar, Humayun Ajaz, Mohsin Javed, Sana Mansoor, Shahid Iqbal, Ahmad Alhujaily, Ali Bahadur, Randa A. Althobiti, Eman Alzahrani, Abd El Aziem Farouk, Foziah F. Al-Fawzan, Eslam B. Elkaeed

Research output: Journal PublicationArticlepeer-review

18 Citations (Scopus)

Abstract

Today, it is crucial but challenging to develop a narrow bandgap photo-catalyst that can eliminate contaminants when exposed to visible light. In this work, we synthesized the ZnO, Te-doped ZnO, and s-g- C3N4 assisted Te-doped ZnO nanoparticles by a susceptible and economical co-precipitation method. Different techniques were employed to characterize the compounds like XRD confirms the formation of pure wurtzite phase present within ZnO nanoparticles. The morphology of produced nanoparticles was studied using FESEM, which reveals that ZnO nanoparticles develop into spherical particles whereas doped particles take the form of nano-sheets with a regular hexagonal pattern. The FT-IR and UV visible spectrum was used to measure the functional groups and optical properties of compounds. The doped compound shows the maximum efficiency of degradation against methylene blue dye under sunlight exposure. Furthermore, E. coli and S. aureus were used as test subjects for the antibacterial activity of these synthetic compounds. On the other hand, the greatest antifungal activity of S-g-C3N4/Te-ZnO against C. albicans was calculated to be 44.6 mm, and 26.5 mm against E. salmonicolor. Te-doped ZnO nanoparticles with the aid of S-g-C3N4 showed remarkable photocatalytic and antimicrobial activities.

Original languageEnglish
Article number116664
JournalPolyhedron
Volume245
DOIs
Publication statusPublished - 15 Nov 2023

Keywords

  • Antimicrobial activity
  • Co-precipitation
  • Doping
  • MB dye
  • Nanocomposites

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Designing of Te-doped ZnO and S-g-C3N4 /Te-ZnO nano-composites as excellent photocatalytic and antimicrobial agents'. Together they form a unique fingerprint.

Cite this