Description of the cardiac movement using hexagonal image structures

Xiangjian He, Wenjing Jia, Qiang Wu, Tom Hintz

Research output: Journal PublicationArticlepeer-review

3 Citations (Scopus)


The most notable characteristic of the heart is its movement. Detection of dynamic information describing cardiac movement such as amplitude, speed and acceleration facilitates interpretation of normal and abnormal function. In recent years, the Omni-directional M-mode Echocardiography System (OMES) has been developed as a process that builds moving information from a sequence of echocardiography image frames. OMES detects cardiac movement through construction and analysis of Position-Time Grey Waveform (PTGW) images on some feature points of the boundaries of the ventricles. Image edge detection plays an important role in determining the feature boundary points and their moving directions as the basis for extraction of PTGW images-Spiral Architecture (SA) has proved efficient for image edge detection. SA is a hexagonal image structure in which an image is represented as a collection of hexagonal pixels. There are two operations called spiral addition and spiral multiplication defined on SA. They correspond to image translation and rotation, respectively. In this paper, we perform ventricle boundary detection based on SA using various defined chain codes. The gradient direction of each boundary point is determined at the same time. PTGW images at each boundary point are obtained through a series of spiral additions according to the directions of boundary points. Unlike the OMES system, our new approach is no longer affected by the translation movement of the heart. As its result, three curves representing the amplitude, speed and acceleration of cardiac movement can be easily drawn from the PTGW images obtained. Our approach is more efficient and accurate than OMES, and our results contain a more robust and complete description of cardiac motion.

Original languageEnglish
Pages (from-to)377-382
Number of pages6
JournalComputerized Medical Imaging and Graphics
Issue number6-7
Publication statusPublished - Sept 2006
Externally publishedYes


  • Edge detection
  • Hexagonal image structure
  • Image analysis
  • Omni-directional M-mode Echocardiography System
  • Spiral Architecture

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Health Informatics
  • Computer Graphics and Computer-Aided Design


Dive into the research topics of 'Description of the cardiac movement using hexagonal image structures'. Together they form a unique fingerprint.

Cite this