Curve reconstruction from noisy samples

Siu Wing Cheng, Stefan Funke, Mordecai Golin, Piyush Kumar, Sheung Hung Poon, Edgar Ramos

Research output: Contribution to conferencePaperpeer-review

11 Citations (Scopus)


We present an algorithm to reconstruct a collection of disjoint smooth closed curves from n noisy samples. Our noise model assumes that the samples are obtained by first drawing points on the curves according to a locally uniform distribution followed by a uniform perturbation of each point in the normal direction with a magnitude smaller than the minimum local feature size. The reconstruction is faithful with a probability that approaches 1 as n increases. We expect that our approach can lead to provable algorithms under less restrictive noise models and for handling non-smooth features.

Original languageEnglish
Number of pages10
Publication statusPublished - 2003
Externally publishedYes
EventNineteenth Annual Symposium on Computational Geometry - san Diego, CA, United States
Duration: 8 Jun 200310 Jun 2003


ConferenceNineteenth Annual Symposium on Computational Geometry
Country/TerritoryUnited States
Citysan Diego, CA


  • Curve reconstruction
  • Probabilistic analysis
  • Sampling

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Computational Mathematics


Dive into the research topics of 'Curve reconstruction from noisy samples'. Together they form a unique fingerprint.

Cite this