Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer

Xiao Lv, Xuliang Jin, Zongxuan Zhang, Yuxing Bai, Tingting Guo, Li Zhang, Hui Zhang, Jesse Zhu, Yuanyuan Shao, Haiping Zhang, Bin Yuan, Aiming Yin, Jinfeng Nie, Fan Cao, Zhengjun Xu

Research output: Journal PublicationArticlepeer-review

2 Citations (Scopus)


Zinc-rich primers are among the most promising organic coating systems for improving the corrosion resistance of metals in the marine environment. However, the high zinc content results in poor coating adhesion, high cost, insecurity and pollution. To decrease the zinc dust content, the carbonaceous and polymer conductive additives carbon black (CB), conductive graphite (CG), multiwalled carbon nanotubes (MWCNT) and polyaniline (PANI) were introduced to partially replace the zinc dust in the primers. A comparative study of the anticorrosion performance of epoxy zinc-rich primer (ZRP) is presented herein to systematically discuss and elaborate on the effects of the different conductive additives. There were no blisters, rust or corrosion products presented on the coatings of the CB-modified series due to the good dispersion and conductivity of nanosized CB clusters, while the zinc corrosion products covered the surface of the MWCNT-modified series samples, which was attributed to the excessive electrical conductivity resulting in high consumption of zinc powder. The lamellar CG provided an additional blocking barrier for the coatings based on the maze effect. The transition from the intrinsic state to the doped state of PANI resulted in corrosion protection for the coatings depending on the cathodic and barrier function. The experimental results suggested that the formula with 2 wt.% CB and 67 wt.% zinc dust had the most promising anticorrosion properties, which was also demonstrated by the high Rct and low CPEdl values calculated according to the equivalent electrical circuit analyses.

Original languageEnglish
Article number1473
Issue number10
Publication statusPublished - Oct 2022


  • anti-corrosion
  • carbon black
  • conductive additive
  • conductive graphite
  • epoxy zinc-rich primer
  • multiwalled carbon nanotubes
  • polyaniline

ASJC Scopus subject areas

  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Comparative Study of Carbonaceous and Polymer Conductive Additives on Anticorrosion Performance of Epoxy Zinc-Rich Primer'. Together they form a unique fingerprint.

Cite this