TY - GEN
T1 - A dynamic truck dispatching problem in marine container terminal
AU - Chen, Jianjun
AU - Bai, Ruibin
AU - Dong, Haibo
AU - Qu, Rong
AU - Kendall, Graham
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2017/2/9
Y1 - 2017/2/9
N2 - In this paper, a dynamic truck dispatching problem of a marine container terminal is described and discussed. In this problem, a few containers, encoded as work instructions, need to be transferred between yard blocks and vessels by a fleet of trucks. Both the yard blocks and the quay are equipped with cranes to support loading/unloading operations. In order to service more vessels, any unnecessary idle time between quay crane (QC) operations need to be minimised to speed up the container transfer process. Due to the unpredictable port situations that can affect routing plans and the short calculation time allowed to generate one, static solution methods are not suitable for this problem. In this paper, we introduce a new mathematical model that minimises both the QC makespan and the truck travelling time. Three dynamic heuristics are proposed and a genetic algorithm hyperheuristic (GAHH) under development is also described. Experiment results show promising capabilities the GAHH may offer.
AB - In this paper, a dynamic truck dispatching problem of a marine container terminal is described and discussed. In this problem, a few containers, encoded as work instructions, need to be transferred between yard blocks and vessels by a fleet of trucks. Both the yard blocks and the quay are equipped with cranes to support loading/unloading operations. In order to service more vessels, any unnecessary idle time between quay crane (QC) operations need to be minimised to speed up the container transfer process. Due to the unpredictable port situations that can affect routing plans and the short calculation time allowed to generate one, static solution methods are not suitable for this problem. In this paper, we introduce a new mathematical model that minimises both the QC makespan and the truck travelling time. Three dynamic heuristics are proposed and a genetic algorithm hyperheuristic (GAHH) under development is also described. Experiment results show promising capabilities the GAHH may offer.
UR - http://www.scopus.com/inward/record.url?scp=85016045444&partnerID=8YFLogxK
U2 - 10.1109/SSCI.2016.7850081
DO - 10.1109/SSCI.2016.7850081
M3 - Conference contribution
AN - SCOPUS:85016045444
T3 - 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016
BT - 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016
Y2 - 6 December 2016 through 9 December 2016
ER -