3D lumped parameter thermal network for wound-field synchronous generators

Yinli Wang, Stefano Nuzzo, Chris Gerada, Weiduo Zhao, He Zhang, Michael Galea

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

This paper proposes a 3D lumped parameter thermal network capable of estimating the temperature distribution in classical, salient-pole wound-field synchronous generators. The developed 3D lumped parameter thermal network can be used for the thermal design and/or analysis of any wound-field synchronous generator geometry, thus offering certain degrees of flexibility.As the accurate estimation of the loss distribution is critical for the accuracy of the proposed 3D lumped parameter thermal network, an electromagnetic finite element model is used in this paper as loss determination tool for an off-the-shelf 400 kVA generator considered as a case study. The simulated losses are validated against experimental measurements to safely include them in the developed network. Finally, the stator and rotor temperatures evaluated through the 3D lumped parameter thermal network are also validated by comparing them against experimental results.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5-9
Number of pages5
ISBN (Electronic)9781728176154
DOIs
Publication statusPublished - 8 Apr 2021
Event2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2021 - Virtual, Modena, Italy
Duration: 8 Apr 20219 Apr 2021

Publication series

NameProceedings - 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2021

Conference

Conference2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2021
Country/TerritoryItaly
CityVirtual, Modena
Period8/04/219/04/21

Keywords

  • Finite element
  • Losses
  • Lumped parameter thermal network
  • Thermal management
  • Wound-field synchronous generators

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Safety, Risk, Reliability and Quality
  • Control and Optimization

Fingerprint

Dive into the research topics of '3D lumped parameter thermal network for wound-field synchronous generators'. Together they form a unique fingerprint.

Cite this