Abstract
Retinal optical coherence tomography (OCT) and OCT angiography (OCTA) suffer from the degeneration of image quality due to speckle noise and bulk-motion noise, respectively. Because the cross-sectional retina has distinct features in OCT and OCTA B-scans, existing digital filters that can denoise OCT efficiently are unable to handle the bulk-motion noise in OCTA. In this Letter, we propose a universal digital filtering approach that is capable of minimizing both types of noise. Considering that the retinal capillaries in OCTA are hard to differentiate in B-scans while having distinct curvilinear structures in 3D volumes, we decompose the volumetric OCT and OCTA data with 3D shearlets, thus efficiently separating the retinal tissue and vessels from the noise in this transform domain. Compared with wavelets and curvelets, the shearlets provide better representation of the layer edges in OCT and the vasculature in OCTA. Qualitative and quantitative results show the proposed method outperforms the state-of-the-art OCT and OCTA denoising methods. Also, the superiority of 3D denoising is demonstrated by comparing the 3D shearlet filtering with its 2D counterpart.
Original language | English |
---|---|
Pages (from-to) | 694-697 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 45 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Feb 2020 |
Externally published | Yes |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics