TiO2-enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation

Mohammad Sayem Mozumder, Jesse Zhu, Hiran Perinpanayagam

Research output: Journal PublicationArticlepeer-review

19 Citations (Scopus)

Abstract

Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO2 (nTiO2) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P < 0.05) higher on the cpTi controls than on the PPC surfaces. Furthermore, spreading and differentiation were consistently higher on the titanium-enriched PPC-2, -3 and -4 than on the titanium-free PPC-1. Therefore, despite the presence of complex micro-topographies and nano-features, titanium-enrichment enhanced the cellular response, and pure titanium still provided the best substrate. These findings confirm the cytocompatibility of these novel polymeric coatings and suggest that titanium-enrichment and nTiO2 additives may enhance their performance.

Original languageEnglish
Article number035009
JournalBiomedical Materials (Bristol)
Volume6
Issue number3
DOIs
Publication statusPublished - Jun 2011
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'TiO2-enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation'. Together they form a unique fingerprint.

Cite this