TY - JOUR
T1 - The integration of hydrogenation and carbon capture utilisation and storage technology
T2 - A potential low-carbon approach to chemical synthesis in China
AU - Zhang, Lingyun
AU - Sun, Nannan
AU - Wang, Minquan
AU - Wu, Tao
AU - Wei, Wei
AU - Pang, Cheng Heng
N1 - Publisher Copyright:
© 2021 John Wiley & Sons Ltd.
PY - 2021/11
Y1 - 2021/11
N2 - The development of carbon emission reduction technologies and clean energy utilisation are two critical drivers for reducing and controlling greenhouse gas (GHG) emission from human activities. Carbon capture, utilisation, and storage (CCUS) is an established and crucial emission reduction technology capable of achieving near-zero-emission from fossil fuels. Hydrogen, a zero-carbon fuel, provides energy security while improving air quality. However, hydrogen is commonly derived from fossil fuels with significant associated CO2 emission. Hence, this study investigates the feasibility of integrating CCUS in the hydrogen industry, particularly from technical, sustainability, and policy perspectives. This study also critically reviews existing CCUS and hydrogen production technologies and discusses the prospects and challenges of each. Studies show that CO2 enhanced oil recovery (CO2-EOR) and CO2 enhanced coal-bed methane recovery (CO2-ECBM) are promising CCUS technologies in China, while producing clean hydrogen from fossil fuels with CCUS and water electrolysis are ideal development route. Specifically, this study proposes the coupling technical route of CCUS + SMR (steam methane reforming) and CCUS + CTH (coal-to-hydrogen) to accelerate carbon emission reduction by 2050 considering their promising carbon reduction potential and the ratio of hydrogen with CCUS. Besides, CO2 hydrogenation integrated chemical production is becoming increasingly popular to achieve carbon emission reduction and low-carbon economy. However, the relatively high costs and lack of hydrogen transportation infrastructure is currently the major bottleneck restricting the development of CCUS and hydrogen industry. Therefore, government subsidies, standardised operation of the carbon market, and technological innovation are useful strategies to address this issue.
AB - The development of carbon emission reduction technologies and clean energy utilisation are two critical drivers for reducing and controlling greenhouse gas (GHG) emission from human activities. Carbon capture, utilisation, and storage (CCUS) is an established and crucial emission reduction technology capable of achieving near-zero-emission from fossil fuels. Hydrogen, a zero-carbon fuel, provides energy security while improving air quality. However, hydrogen is commonly derived from fossil fuels with significant associated CO2 emission. Hence, this study investigates the feasibility of integrating CCUS in the hydrogen industry, particularly from technical, sustainability, and policy perspectives. This study also critically reviews existing CCUS and hydrogen production technologies and discusses the prospects and challenges of each. Studies show that CO2 enhanced oil recovery (CO2-EOR) and CO2 enhanced coal-bed methane recovery (CO2-ECBM) are promising CCUS technologies in China, while producing clean hydrogen from fossil fuels with CCUS and water electrolysis are ideal development route. Specifically, this study proposes the coupling technical route of CCUS + SMR (steam methane reforming) and CCUS + CTH (coal-to-hydrogen) to accelerate carbon emission reduction by 2050 considering their promising carbon reduction potential and the ratio of hydrogen with CCUS. Besides, CO2 hydrogenation integrated chemical production is becoming increasingly popular to achieve carbon emission reduction and low-carbon economy. However, the relatively high costs and lack of hydrogen transportation infrastructure is currently the major bottleneck restricting the development of CCUS and hydrogen industry. Therefore, government subsidies, standardised operation of the carbon market, and technological innovation are useful strategies to address this issue.
KW - CCUS
KW - CO2 emissions
KW - carbon neutrality
KW - carbon reduction
KW - hydrogen
UR - http://www.scopus.com/inward/record.url?scp=85111691650&partnerID=8YFLogxK
U2 - 10.1002/er.7076
DO - 10.1002/er.7076
M3 - Review article
AN - SCOPUS:85111691650
SN - 0363-907X
VL - 45
SP - 19789
EP - 19818
JO - International Journal of Energy Research
JF - International Journal of Energy Research
IS - 14
ER -