TY - JOUR
T1 - The Biogenic Synthesis of Cobalt Monometallic and Cobalt–Zinc Bimetallic Nanoparticles Using Cymbopogan citratus L. Leaf Extract and Assessment of Their Activities as Efficient Dye Removal and Antioxidant Agents
AU - Riaz, Tauheeda
AU - Nayyar, Soha
AU - Shahzadi, Tayyaba
AU - Zaib, Maria
AU - Shahid, Sammia
AU - Mansoor, Sana
AU - Javed, Mohsin
AU - Iqbal, Shahid
AU - Al-Anazy, Murefah Mana
AU - B. Elkaeed, Eslam
AU - Pashameah, Rami Adel
AU - Alzahrani, Eman
AU - Farouk, Abd Elaziem
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - In this work, green synthesized cobalt monometallic and cobalt–zinc bimetallic NPs were prepared by bioreduction of metallic salts with Cymbopogan citratus plant extract. Biosynthesized cobalt nanoparticles (NPs) and cobalt–zinc bimetallic NPs were characterized using diverse techniques such as FTIR, UV-Visible spectroscopy, SEM, XRD, and EDX analyses. UV-visible spectra for green-synthesized cobalt monometallic and cobalt–zinc bimetallic NPs were in the range between 300 to 350 nm, which confirmed the formation of stable monometallic and bimetallic NPs. The average particle size of CoNPs calculated by XRD analysis was found to be 22.77 nm and that of Co-Zn BMNPs was 14.8 nm. Different functional groups in the Cymbopogan citratus plant extract, which served as a reducing and stabilizing agent for NPs, were identified by FTIR spectra. Cobalt NPs and cobalt–zinc bimetallic NPs were used in the evaluation of antioxidant, anti-inflammatory, and dye degradation activity. Green-synthesized cobalt monometallic NPs and cobalt–zinc bimetallic NPs exhibited excellent antioxidant activity with the scavenging of DPPH free radicals. Green synthesized cobalt NPs and cobalt–zinc bimetallic NPs were utilized for the removal of methylene blue (MB) dye. Different parameters such as the effect of temperature, pH, and dye concentration on adsorbent doses were analyzed and optimized. The best dye removal percentage was obtained with Co-Zn BMNPs compared with CoNPs. Cobalt NPs and cobalt–zinc bimetallic NPs did not display good anti-inflammatory activity because of the presence of secondary metabolites which inhibited them to react with proteins.
AB - In this work, green synthesized cobalt monometallic and cobalt–zinc bimetallic NPs were prepared by bioreduction of metallic salts with Cymbopogan citratus plant extract. Biosynthesized cobalt nanoparticles (NPs) and cobalt–zinc bimetallic NPs were characterized using diverse techniques such as FTIR, UV-Visible spectroscopy, SEM, XRD, and EDX analyses. UV-visible spectra for green-synthesized cobalt monometallic and cobalt–zinc bimetallic NPs were in the range between 300 to 350 nm, which confirmed the formation of stable monometallic and bimetallic NPs. The average particle size of CoNPs calculated by XRD analysis was found to be 22.77 nm and that of Co-Zn BMNPs was 14.8 nm. Different functional groups in the Cymbopogan citratus plant extract, which served as a reducing and stabilizing agent for NPs, were identified by FTIR spectra. Cobalt NPs and cobalt–zinc bimetallic NPs were used in the evaluation of antioxidant, anti-inflammatory, and dye degradation activity. Green-synthesized cobalt monometallic NPs and cobalt–zinc bimetallic NPs exhibited excellent antioxidant activity with the scavenging of DPPH free radicals. Green synthesized cobalt NPs and cobalt–zinc bimetallic NPs were utilized for the removal of methylene blue (MB) dye. Different parameters such as the effect of temperature, pH, and dye concentration on adsorbent doses were analyzed and optimized. The best dye removal percentage was obtained with Co-Zn BMNPs compared with CoNPs. Cobalt NPs and cobalt–zinc bimetallic NPs did not display good anti-inflammatory activity because of the presence of secondary metabolites which inhibited them to react with proteins.
KW - bimetallic NPs
KW - biogenic
KW - dye removal
KW - green synthesis
KW - leaf extract
UR - http://www.scopus.com/inward/record.url?scp=85140451614&partnerID=8YFLogxK
U2 - 10.3390/agronomy12102505
DO - 10.3390/agronomy12102505
M3 - Article
AN - SCOPUS:85140451614
SN - 2073-4395
VL - 12
JO - Agronomy
JF - Agronomy
IS - 10
M1 - 2505
ER -