Abstract
Genome sequencing has revealed a large number of shared and personal somatic mutations across human cancers. In principle, any genetic alteration affecting a protein-coding region has the potential to generate mutated peptides that are presented by surface HLA class I proteins that might be recognized by cytotoxic T cells. To test this possibility, we implemented a streamlined approach for the prediction and validation of such neoantigens derived from individual tumors and presented by patient-specific HLA alleles. We applied our computational pipeline to 91 chronic lymphocytic leukemias (CLLs) that underwent whole-exome sequencing (WES). We predicted ~22 mutated HLA-binding peptides per leukemia (derived from ~16 missense mutations) and experimentally confirmed HLA binding for ~55% of such peptides. Two CLL patients that achieved long-term remission following allogeneic hematopoietic stem cell transplantation were monitored for CD8+ T-cell responses against predicted or confirmed HLA-binding peptides. Long-lived cytotoxic T-cell responses were detected against peptides generated from personal tumor mutations in ALMS1, C6ORF89, and FNDC3B presented on tumor cells. Finally, we applied our computational pipeline to WES data (N = 2488 samples) across 13 different cancer types and estimated dozens to thousands of predicted neoantigens per individual tumor, suggesting that neoantigens are frequent in most tumors.
Original language | English |
---|---|
Pages (from-to) | 453-462 |
Number of pages | 10 |
Journal | Blood |
Volume | 124 |
Issue number | 3 |
DOIs | |
Publication status | Published - 17 Jul 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Immunology
- Hematology
- Cell Biology