Synthesis of graphene: Potential carbon precursors and approaches

Yuxin Yan, Fathima Zahra Nashath, Sharon Chen, Sivakumar Manickam, Siew Shee Lim, Haitao Zhao, Edward Lester, Tao Wu, Cheng Heng Pang

Research output: Journal PublicationReview articlepeer-review

100 Citations (Scopus)
61 Downloads (Pure)

Abstract

Graphene is an advanced carbon functional material with inherent unique properties that make it suitable for a wide range of applications. It can be synthesized through either the top-down approach involving delamination of graphitic materials or the bottom-up approach involving graphene assembly from smaller building units. Common top-down approaches are exfoliation and reduction while bottom-up approaches include chemical vapour deposition, epitaxial growth, and pyrolysis. A range of materials have been successfully used as precursors in various synthesis methods to derive graphene. This review analyses and discusses the suitability of conventional, plant- and animal-derived, chemical, and fossil precursors for graphene synthesis. Together with its associated technical feasibility and economic and environmental impacts, the quality of resultant graphene is critically assessed and discussed. After evaluating the parameters mentioned above, the most appropriate synthesis method for each precursor is identified. While graphite is currently the most common precursor for graphene synthesis, several other precursors have the potential to synthesize graphene of comparable, if not better, quality and yield. Thus, this review provides an overview and insights into identifying the potential of various carbon precursors for large-scale and commercial production of fit-for-purpose graphene for specific applications.

Original languageEnglish
Pages (from-to)1284-1314
Number of pages31
JournalNanotechnology Reviews
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Jan 2020

Keywords

  • biomass
  • bottom-up
  • cheese
  • coal
  • ethanol
  • glucose
  • graphite
  • methane
  • polymer
  • top-down

ASJC Scopus subject areas

  • Biotechnology
  • Medicine (miscellaneous)
  • Materials Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Engineering (miscellaneous)
  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'Synthesis of graphene: Potential carbon precursors and approaches'. Together they form a unique fingerprint.

Cite this