STAR-RIS Assisted Wireless Powered IoT Networks

Wannian Du, Zheng Chu, Gaojie Chen, Pei Xiao, Yue Xiao, Xiaobei Wu, Wanming Hao

Research output: Journal PublicationArticlepeer-review

15 Citations (Scopus)

Abstract

The paper proposes a novel design of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) in a wireless powered Internet of Things (IoT) network, where two sensor node groups (SNGs) harvest energy from a power station (PS) and transmit their message to an access point (AP) with the harvested energy. The STAR-RIS, which is deployed in the middle of the SNGs and adopts the time splitting (TS) working mode, can help the energy transfer in the wireless energy transfer (WET) phase and the information transfer in the wireless information transfer (WIT) phase. The paper aims to maximize the sum throughput from the two SNGs to the AP by jointly designing the phase shifts of the STAR-RIS and the working time allocated to the two SNGs in the WET and WIT phases, respectively. To solve the formulated non-convex optimization problem, we propose a low-complexity algorithm where we first derive the optimal phase shifts of the STAR-RIS in the WIT phase. Then, we adopt the Lagrange dual method to simplify the optimization problem and optimize the phase shifts of the STAR-RIS in the WET phase by the Majorization-Minimization (MM) algorithm and the complex circle manifold (CCM) algorithm. Next, a two-layer iterative algorithm is used to obtain the optimal values of time allocated to the two SNGs. Finally, we evaluate the improvement of the proposed scheme by the simulation results compared with other benchmark schemes..

Original languageEnglish
Pages (from-to)10644-10658
Number of pages15
JournalIEEE Transactions on Vehicular Technology
Volume72
Issue number8
DOIs
Publication statusPublished - 1 Aug 2023
Externally publishedYes

Keywords

  • STAR-RIS
  • energy harvesting
  • phase shifts optimization
  • time allocations optimization
  • wireless powered IoT network

ASJC Scopus subject areas

  • Aerospace Engineering
  • Electrical and Electronic Engineering
  • Computer Networks and Communications
  • Automotive Engineering

Fingerprint

Dive into the research topics of 'STAR-RIS Assisted Wireless Powered IoT Networks'. Together they form a unique fingerprint.

Cite this