Abstract
Stabilizing oxidation state of Cu (Cuδ+, δ > 0) sites is the key-enabling issue for electrocatalytic carbon dioxide (CO2) reduction reaction (eCO2RR) to multicarbon (C2+) products. The present study addresses this challenge by introducing cerium (Ce) doping into La2CuO4. The Ce doping facilitates f–d orbital coupling between Ce 4f and Cu 3d orbitals, suppressing electron enrichment around Cu atoms by transferring electrons from Cu 3d orbitals to Ce 4f orbitals via a Cu−O−Ce chain. These changes modulate the electronic structure of Cu, reduce the distance between neighboring Cu atoms, optimize the binding energy of surface-adsorbed CO (*CO), and lower the reaction energy barrier for *CO dimerization. As a result, the La1.95Ce0.05CuO4 catalyst achieves a Faradaic efficiency up to 81% for C2+ products and maintains high stability over 50 h operation. This work highlights the unique role of Ce doping in stabilizing Cuδ+ sites and hence enhancing C−C coupling, providing a pathway for designing efficient catalysts for eCO2RR.
Original language | English |
---|---|
Journal | Small Methods |
DOIs | |
Publication status | Published - 2 Mar 2025 |
Keywords
- Ce doping
- CO electroreduction
- LaCuO
- Multicarbon products
- Oxidation state of Cu
ASJC Scopus subject areas
- General Chemistry
- General Materials Science