Abstract
Numerous protocols in heterostructure engineering hold promise for effectively improving the optical properties of nanomaterials for energy-harvesting applications. In this work, we successfully fabricated Ag/α-Fe2O3/TiO2 heterostructures via electrochemical anodization assisted by pulse sonication. The morphological features of the silver (Ag) deposited on α-Fe2O3/TiO2 showed a layered distribution of the α-Fe2O3 nanoparticles (NPs) over the TiO2 nanotube arrays (NTAs), whereas Ag existed in a pseudocubical form. X-ray diffraction (XRD) patterns and X-ray photoelectron spectrometer (XPS) analysis validated the formation of α-Fe2O3 and anatase TiO2 crystalline phases and Ag/α-Fe2O3/TiO2 heterostructure. The diffuse reflectance spectroscopy (DRS) UV-vis spectroscopy results displayed a gradual decrease in the band gap with enhanced absorption in the visible region of the spectrum due to optically active heterostructure formation in the order Ag/α-Fe2O3/TiO2 (470 nm) > α-Fe2O3/TiO2 (424 nm) > TiO2 (386 nm). The DRS absorption spectrum of Ag/α-Fe2O3/TiO2 also exhibits a characteristic plasmon shoulder of Ag at ∼420 nm. The photocurrent density of Ag/α-Fe2O3/TiO2 (2.59 mA/cm2) is almost 2.5- and 5-fold higher than that of α-Fe2O3/TiO2 (1.05 mA/cm2) and pristine TiO2 (0.54 mA/cm2), respectively, which can be related with the plasmonic behavior of Ag and lower band gap of α-Fe2O3. The results of electron impedance spectroscopy (EIS) analysis also showed facile charge transfer in the same order observed using UV-vis spectroscopy. These results demonstrate the effectiveness of the in situ electrochemical protocol to fabricate tunable heterostructures for efficient solar-driven water splitting.
Original language | English |
---|---|
Pages (from-to) | 11235-11245 |
Number of pages | 11 |
Journal | ACS Sustainable Chemistry and Engineering |
Volume | 6 |
Issue number | 9 |
DOIs | |
Publication status | Published - 4 Sept 2018 |
Externally published | Yes |
Keywords
- Ag/α-FeO/TiO
- Photoanode
- Photocurrent
- Plasmonic
- Water Oxidation
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry
- General Chemical Engineering
- Renewable Energy, Sustainability and the Environment