TY - JOUR
T1 - Smart Wearables with Sensor Fusion for Fall Detection in Firefighting
AU - Chai, Xiaoqing
AU - Wu, Renjie
AU - Pike, Matthew
AU - Jin, Hangchao
AU - Chung, Wan-Young
AU - Lee, Boon-Giin
N1 - This research was supported by the Zhejiang Provincial Natural Science Foundation
of China under Grant No. LQ21F020024. This research was also funded by a National Research
Foundation of Korea (NRF) grant (2019R1A2C1089139) funded by the Korean Government (MIST).
PY - 2021/10/12
Y1 - 2021/10/12
N2 - During the past decade, falling has been one of the top three causes of death amongst firefighters in China. Even though there are many studies on fall-detection systems (FDSs), the majority use a single motion sensor. Furthermore, few existing studies have considered the impact sensor placement and positioning have on fall-detection performance; most are targeted toward fall detection of the elderly. Unfortunately, floor cracks and unstable building structures in the fireground increase the difficulty of detecting the fall of a firefighter. In particular, the movement activities of firefighters are more varied; hence, distinguishing fall-like activities from actual falls is a significant challenge. This study proposed a smart wearable FDS for firefighter fall detection by integrating motion sensors into the firefighter’s personal protective clothing on the chest, elbows, wrists, thighs, and ankles. The firefighter’s fall activities are detected by the proposed multisensory recurrent neural network, and the performances of different combinations of inertial measurement units (IMUs) on different body parts were also investigated. The results indicated that the sensor fusion of IMUs from all five proposed body parts achieved performances of 94.10%, 92.25%, and 94.59% in accuracy, sensitivity, and specificity, respectively.
AB - During the past decade, falling has been one of the top three causes of death amongst firefighters in China. Even though there are many studies on fall-detection systems (FDSs), the majority use a single motion sensor. Furthermore, few existing studies have considered the impact sensor placement and positioning have on fall-detection performance; most are targeted toward fall detection of the elderly. Unfortunately, floor cracks and unstable building structures in the fireground increase the difficulty of detecting the fall of a firefighter. In particular, the movement activities of firefighters are more varied; hence, distinguishing fall-like activities from actual falls is a significant challenge. This study proposed a smart wearable FDS for firefighter fall detection by integrating motion sensors into the firefighter’s personal protective clothing on the chest, elbows, wrists, thighs, and ankles. The firefighter’s fall activities are detected by the proposed multisensory recurrent neural network, and the performances of different combinations of inertial measurement units (IMUs) on different body parts were also investigated. The results indicated that the sensor fusion of IMUs from all five proposed body parts achieved performances of 94.10%, 92.25%, and 94.59% in accuracy, sensitivity, and specificity, respectively.
KW - fall detection system
KW - deep learning
KW - wearable IOT technology
KW - inertial measurement unit
KW - multisensory fusion
U2 - 10.3390/s21206770
DO - 10.3390/s21206770
M3 - Article
C2 - 34695983
SN - 1424-8220
VL - 21
SP - 1
EP - 18
JO - Sensors
JF - Sensors
IS - 20
M1 - 6770
ER -