Abstract
For photovoltaic applications, undoped and Ni2+ doped Bi2 S3 thin films were chemically deposited onto glass substrates at room temperature. Elemental diffraction analysis confirmed the successful Ni2+ incorporation in the range of 1.0 to 2.0 at. %, while X-ray Diffraction analysis revealed that orthorhombic crystal lattice of Bi2 S3 was conserved while transferring from binary to ternary phase. Scanning electron microscopy images reported homogeneous and crack-free morphology of the obtained films. Optoelectronic analysis revealed that the bandgap value was shifted from 1.7 to 1.1 eV. Ni2+ incorporation also improved the carrier concentration, leading to higher electrical conductivity. Resultant optoelectronic behavior of ternary Bi2−x Nix S3 thin films suggests that doping is proved to be an effectual tool to optimize the photovoltaic response of Bi2 S3 for solar cell applications.
Original language | English |
---|---|
Article number | 4603 |
Journal | Sustainability (Switzerland) |
Volume | 14 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Apr 2022 |
Externally published | Yes |
Keywords
- chemical bath deposition
- optoelectronic properties
- photovoltaic behaviour
- semiconductors
ASJC Scopus subject areas
- Computer Science (miscellaneous)
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Hardware and Architecture
- Computer Networks and Communications
- Management, Monitoring, Policy and Law