TY - GEN
T1 - Self-Supervision Boosted Retinal Vessel Segmentation for Cross-Domain Data
AU - Li, Haojin
AU - Li, Heng
AU - Shu, Hai
AU - Chen, Jianyu
AU - Hu, Yan
AU - Liu, Jiang
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - The morphology of the retinal vascular structure in fundus images is of great importance for ocular disease diagnosis. However, due to the poor fundus image quality and domain shifts between datasets, retinal vessel segmentation has long been regarded as a problematic machine-learning task. This work proposes a novel algorithm High-frequency Guided Cascaded Network (HGC-Net) to address the above issues. In our algorithm, a self-supervision mechanism is designed to improve the generalizability and robustness of the model. We apply Fourier Augmented Co-Teacher (FACT) augmentation to convert the style of fundus images, and extract high-frequency component (HFC) to highlight the vascular structure. The main structure of the algorithm is two cascaded U-nets, in which the first U-net generates a domain-invariant high-frequency map of fundus images, thus improving the segmentation stability of the second U-net. Comparison with the state-of-the-art methods and ablation study are conducted to demonstrate the excellent performance of our proposed HGC-Net.
AB - The morphology of the retinal vascular structure in fundus images is of great importance for ocular disease diagnosis. However, due to the poor fundus image quality and domain shifts between datasets, retinal vessel segmentation has long been regarded as a problematic machine-learning task. This work proposes a novel algorithm High-frequency Guided Cascaded Network (HGC-Net) to address the above issues. In our algorithm, a self-supervision mechanism is designed to improve the generalizability and robustness of the model. We apply Fourier Augmented Co-Teacher (FACT) augmentation to convert the style of fundus images, and extract high-frequency component (HFC) to highlight the vascular structure. The main structure of the algorithm is two cascaded U-nets, in which the first U-net generates a domain-invariant high-frequency map of fundus images, thus improving the segmentation stability of the second U-net. Comparison with the state-of-the-art methods and ablation study are conducted to demonstrate the excellent performance of our proposed HGC-Net.
KW - Retinal vessel segmentation
KW - domain generalization
KW - self-supervision
UR - http://www.scopus.com/inward/record.url?scp=85172142888&partnerID=8YFLogxK
U2 - 10.1109/ISBI53787.2023.10230561
DO - 10.1109/ISBI53787.2023.10230561
M3 - Conference contribution
AN - SCOPUS:85172142888
T3 - Proceedings - International Symposium on Biomedical Imaging
BT - 2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
PB - IEEE Computer Society
T2 - 20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
Y2 - 18 April 2023 through 21 April 2023
ER -