TY - GEN
T1 - Quality Classified Image Analysis with Application to Face Detection and Recognition
AU - Yang, Fei
AU - Zhang, Qian
AU - Wang, Miaohui
AU - Qiu, Guoping
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/11/26
Y1 - 2018/11/26
N2 - Motion blur, out of focus, insufficient spatial resolution, lossy compression and many other factors can all cause an image to have poor quality. However, image quality is a largely ignored issue in traditional pattern recognition literature. In this paper, we use face detection and recognition as case studies to show that image quality is an essential factor which will affect the performances of traditional algorithms. We demonstrated that it is not the image quality itself that is the most important, but rather the quality of the images in the training set should have similar quality as those in the testing set. To handle real-world application scenarios where images with different kinds and severities of degradation can be presented to the system, we have developed a quality classified image analysis framework to deal with images of mixed qualities adaptively. We use deep neural networks first to classify images based on their quality classes and then design a separate face detector and recognizer for images in each quality class. We will present experimental results to show that our quality classified framework can accurately classify images based on the type and severity of image degradations and can significantly boost the performances of state-of-the-art face detector and recognizer in dealing with image datasets containing mixed quality images.
AB - Motion blur, out of focus, insufficient spatial resolution, lossy compression and many other factors can all cause an image to have poor quality. However, image quality is a largely ignored issue in traditional pattern recognition literature. In this paper, we use face detection and recognition as case studies to show that image quality is an essential factor which will affect the performances of traditional algorithms. We demonstrated that it is not the image quality itself that is the most important, but rather the quality of the images in the training set should have similar quality as those in the testing set. To handle real-world application scenarios where images with different kinds and severities of degradation can be presented to the system, we have developed a quality classified image analysis framework to deal with images of mixed qualities adaptively. We use deep neural networks first to classify images based on their quality classes and then design a separate face detector and recognizer for images in each quality class. We will present experimental results to show that our quality classified framework can accurately classify images based on the type and severity of image degradations and can significantly boost the performances of state-of-the-art face detector and recognizer in dealing with image datasets containing mixed quality images.
UR - http://www.scopus.com/inward/record.url?scp=85059767251&partnerID=8YFLogxK
U2 - 10.1109/ICPR.2018.8545476
DO - 10.1109/ICPR.2018.8545476
M3 - Conference contribution
AN - SCOPUS:85059767251
T3 - Proceedings - International Conference on Pattern Recognition
SP - 2863
EP - 2868
BT - 2018 24th International Conference on Pattern Recognition, ICPR 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 24th International Conference on Pattern Recognition, ICPR 2018
Y2 - 20 August 2018 through 24 August 2018
ER -