Position control study of a bearingless multi-sector permanent magnet machine

G. Valente, A. Formentini, L. Papini, P. Zanchetta, C. Gerada

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

Bearingless motors combine in the same structure the characteristics of conventional motors and magnetic bearings. Traditional bearingless machines rely on two independent sets of winding for suspension force and torque production, respectively. The proposed Multi-Sector Permanent Magnet (MSPM) motor exploits the spatial distribution of the multi-three-phase windings within the stator circumference in order to produce a controllable suspension force. Therefore, force and torque generation are embedded in the same winding setting. In this paper the force and torque generation principles are investigated and a mathematical model is presented considering the rotor displacement. A two Degree of freedom (DOF) position controller is designed taking into consideration the rotor overall dynamic system and a controller gains selection strategy is suggested. A simulation study of the bearingless system in different operating conditions is presented and the suspension force and torque produced are validated through Finite Element Analysis (FEA).

Original languageEnglish
Title of host publicationProceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8808-8813
Number of pages6
ISBN (Electronic)9781538611272
DOIs
Publication statusPublished - 15 Dec 2017
Event43rd Annual Conference of the IEEE Industrial Electronics Society, IECON 2017 - Beijing, China
Duration: 29 Oct 20171 Nov 2017

Publication series

NameProceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society
Volume2017-January

Conference

Conference43rd Annual Conference of the IEEE Industrial Electronics Society, IECON 2017
Country/TerritoryChina
CityBeijing
Period29/10/171/11/17

Keywords

  • Bearingless machines
  • Multi-Sector Permanent Magnet machines
  • Radial Force Control

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering
  • Control and Optimization
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Position control study of a bearingless multi-sector permanent magnet machine'. Together they form a unique fingerprint.

Cite this