TY - GEN
T1 - Polar Eyeball Shape Net for 3D Posterior Ocular Shape Representation
AU - Zhang, Jiaqi
AU - Hu, Yan
AU - Qi, Xiaojuan
AU - Meng, Ting
AU - Wang, Lihui
AU - Fu, Huazhu
AU - Yang, Mingming
AU - Liu, Jiang
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
PY - 2023
Y1 - 2023
N2 - The shape of the posterior eyeball is a crucial factor in many clinical applications, such as myopia prevention, surgical planning, and disease screening. However, current shape representations are limited by their low resolution or small field of view, providing insufficient information for surgeons to make accurate decisions. This paper proposes a novel task of reconstructing complete 3D posterior shapes based on small-FOV OCT images and introduces a novel Posterior Eyeball Shape Network (PESNet) to accomplish this task. The proposed PESNet is designed with dual branches that incorporate anatomical information of the eyeball as guidance. To capture more detailed information, we introduce a Polar Voxelization Block (PVB) that transfers sparse input point clouds to a dense representation. Furthermore, we propose a Radius-wise Fusion Block (RFB) that fuses correlative hierarchical features from the two branches. Our qualitative results indicate that PESNet provides a well-represented complete posterior eyeball shape with a chamfer distance of 9.52, SSIM of 0.78, and Density of 0.013 on the self-made posterior ocular shape dataset. We also demonstrate the effectiveness of our model by testing it on patients’ data. Overall, our proposed PESNet offers a significant improvement over existing methods in accurately reconstructing the complete 3D posterior eyeball shape. This achievement has important implications for clinical applications.
AB - The shape of the posterior eyeball is a crucial factor in many clinical applications, such as myopia prevention, surgical planning, and disease screening. However, current shape representations are limited by their low resolution or small field of view, providing insufficient information for surgeons to make accurate decisions. This paper proposes a novel task of reconstructing complete 3D posterior shapes based on small-FOV OCT images and introduces a novel Posterior Eyeball Shape Network (PESNet) to accomplish this task. The proposed PESNet is designed with dual branches that incorporate anatomical information of the eyeball as guidance. To capture more detailed information, we introduce a Polar Voxelization Block (PVB) that transfers sparse input point clouds to a dense representation. Furthermore, we propose a Radius-wise Fusion Block (RFB) that fuses correlative hierarchical features from the two branches. Our qualitative results indicate that PESNet provides a well-represented complete posterior eyeball shape with a chamfer distance of 9.52, SSIM of 0.78, and Density of 0.013 on the self-made posterior ocular shape dataset. We also demonstrate the effectiveness of our model by testing it on patients’ data. Overall, our proposed PESNet offers a significant improvement over existing methods in accurately reconstructing the complete 3D posterior eyeball shape. This achievement has important implications for clinical applications.
KW - 3D reconstruction
KW - Anatomical prior guided
KW - Polar transformation
KW - Posterior eyeball shape
UR - http://www.scopus.com/inward/record.url?scp=85174741197&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43987-2_18
DO - 10.1007/978-3-031-43987-2_18
M3 - Conference contribution
AN - SCOPUS:85174741197
SN - 9783031439865
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 180
EP - 190
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
A2 - Greenspan, Hayit
A2 - Greenspan, Hayit
A2 - Madabhushi, Anant
A2 - Mousavi, Parvin
A2 - Salcudean, Septimiu
A2 - Duncan, James
A2 - Syeda-Mahmood, Tanveer
A2 - Taylor, Russell
PB - Springer Science and Business Media Deutschland GmbH
T2 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Y2 - 8 October 2023 through 12 October 2023
ER -