TY - GEN
T1 - Pathological Semantics-Preserving Learning for H&E-to-IHC Virtual Staining
AU - Chen, Fuqiang
AU - Zhang, Ranran
AU - Zheng, Boyun
AU - Sun, Yiwen
AU - He, Jiahui
AU - Qin, Wenjian
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
PY - 2024
Y1 - 2024
N2 - Conventional hematoxylin-eosin (H&E) staining is limited to revealing cell morphology and distribution, whereas immunohistochemical (IHC) staining provides precise and specific visualization of protein activation at the molecular level. Virtual staining technology has emerged as a solution for highly efficient IHC examination, which directly transforms H&E-stained images to IHC-stained images. However, virtual staining is challenged by the insufficient mining of pathological semantics and the spatial misalignment of pathological semantics. To address these issues, we propose the Pathological Semantics-Preserving Learning method for Virtual Staining (PSPStain), which directly incorporates the molecular-level semantic information and enhances semantics interaction despite any spatial inconsistency. Specifically, PSPStain comprises two novel learning strategies: 1) Protein-Aware Learning Strategy (PALS) with Focal Optical Density (FOD) map maintains the coherence of protein expression level, which represents molecular-level semantic information; 2) Prototype-Consistent Learning Strategy (PCLS), which enhances cross-image semantic interaction by prototypical consistency learning. We evaluate PSPStain on two public datasets using five metrics: three clinically relevant metrics and two for image quality. Extensive experiments indicate that PSPStain outperforms current state-of-the-art H&E-to-IHC virtual staining methods and demonstrates a high pathological correlation between the staging of real and virtual stains. Code is available at https://github.com/ccitachi/PSPStain.
AB - Conventional hematoxylin-eosin (H&E) staining is limited to revealing cell morphology and distribution, whereas immunohistochemical (IHC) staining provides precise and specific visualization of protein activation at the molecular level. Virtual staining technology has emerged as a solution for highly efficient IHC examination, which directly transforms H&E-stained images to IHC-stained images. However, virtual staining is challenged by the insufficient mining of pathological semantics and the spatial misalignment of pathological semantics. To address these issues, we propose the Pathological Semantics-Preserving Learning method for Virtual Staining (PSPStain), which directly incorporates the molecular-level semantic information and enhances semantics interaction despite any spatial inconsistency. Specifically, PSPStain comprises two novel learning strategies: 1) Protein-Aware Learning Strategy (PALS) with Focal Optical Density (FOD) map maintains the coherence of protein expression level, which represents molecular-level semantic information; 2) Prototype-Consistent Learning Strategy (PCLS), which enhances cross-image semantic interaction by prototypical consistency learning. We evaluate PSPStain on two public datasets using five metrics: three clinically relevant metrics and two for image quality. Extensive experiments indicate that PSPStain outperforms current state-of-the-art H&E-to-IHC virtual staining methods and demonstrates a high pathological correlation between the staging of real and virtual stains. Code is available at https://github.com/ccitachi/PSPStain.
KW - Protein awareness
KW - Prototype consistency
KW - Semantics preserving
KW - Virtual stain
UR - http://www.scopus.com/inward/record.url?scp=85207655180&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-72083-3_36
DO - 10.1007/978-3-031-72083-3_36
M3 - Conference contribution
SN - 9783031720826
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 384
EP - 394
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 - 27th International Conference, Proceedings
A2 - Linguraru, Marius George
A2 - Dou, Qi
A2 - Feragen, Aasa
A2 - Giannarou, Stamatia
A2 - Glocker, Ben
A2 - Lekadir, Karim
A2 - Schnabel, Julia A.
PB - Springer Science and Business Media Deutschland GmbH
T2 - 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Y2 - 6 October 2024 through 10 October 2024
ER -