TY - GEN
T1 - Multi-objective evolutionary algorithm for discovering peptide binding motifs
AU - Rajapakse, Menaka
AU - Schmidt, Bertil
AU - Brusic, Vladimir
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006
Y1 - 2006
N2 - Multi-Objective Evolutionary Algorithms (MOEA) use Genetic Algorithms (GA) to find a set of potential solutions, which are reached by compromising trade-offs between the multiple objectives. This paper presents a novel approach using MOEA to search for a motif which can unravel rules governing peptide binding to medically important receptors with applications to drugs and vaccines target discovery. However, the degeneracy of motifs due to the varying physicochemical properties at the binding sites across large number of active peptides poses a challenge for the detection of motifs of specific molecules such as MHC Class II molecule I-Ag7 of the non-obese diabetic (NOD) mouse. Several motifs have been experimentally derived for I-Ag7 molecule, but they differ from each other significantly. We have formulated the problem of finding a consensus motif for I-Ag7 by using MOEA as an outcome that satisfies two objectives: extract prior information by minimizing the distance between the experimentally derived motifs and the resulting matrix by MOEA; minimize the overall number of false positives and negatives resulting by using the putative MOEA-derived motif. The MOEA results in a Pareto optimal set of motifs from which the best motif is chosen by the Area under the Receiver Operator Characteristics (AROC) performance on an independent test dataset. We compared the MOEA-derived motif with the experimentally derived motifs and motifs derived by computational techniques such as MEME, RANKPEP, and Gibbs Motif Sampler. The overall predictive performance of the MOEA derived motif is comparable or better than the experimentally derived motifs and is better than the computationally derived motifs.
AB - Multi-Objective Evolutionary Algorithms (MOEA) use Genetic Algorithms (GA) to find a set of potential solutions, which are reached by compromising trade-offs between the multiple objectives. This paper presents a novel approach using MOEA to search for a motif which can unravel rules governing peptide binding to medically important receptors with applications to drugs and vaccines target discovery. However, the degeneracy of motifs due to the varying physicochemical properties at the binding sites across large number of active peptides poses a challenge for the detection of motifs of specific molecules such as MHC Class II molecule I-Ag7 of the non-obese diabetic (NOD) mouse. Several motifs have been experimentally derived for I-Ag7 molecule, but they differ from each other significantly. We have formulated the problem of finding a consensus motif for I-Ag7 by using MOEA as an outcome that satisfies two objectives: extract prior information by minimizing the distance between the experimentally derived motifs and the resulting matrix by MOEA; minimize the overall number of false positives and negatives resulting by using the putative MOEA-derived motif. The MOEA results in a Pareto optimal set of motifs from which the best motif is chosen by the Area under the Receiver Operator Characteristics (AROC) performance on an independent test dataset. We compared the MOEA-derived motif with the experimentally derived motifs and motifs derived by computational techniques such as MEME, RANKPEP, and Gibbs Motif Sampler. The overall predictive performance of the MOEA derived motif is comparable or better than the experimentally derived motifs and is better than the computationally derived motifs.
UR - http://www.scopus.com/inward/record.url?scp=33745804025&partnerID=8YFLogxK
U2 - 10.1007/11732242_14
DO - 10.1007/11732242_14
M3 - Conference contribution
AN - SCOPUS:33745804025
SN - 3540332375
SN - 9783540332374
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 149
EP - 158
BT - Applications of Evolutionary Computing - EvoWorkshops 2006
T2 - EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC
Y2 - 10 April 2006 through 12 April 2006
ER -