Ki-GAN: Knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo

Hengrong Lan, Kang Zhou, Changchun Yang, Jun Cheng, Jiang Liu, Shenghua Gao, Fei Gao

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

41 Citations (Scopus)

Abstract

Photoacoustic computed tomography (PACT) breaks through the depth restriction in optical imaging, and the contrast restriction in ultrasound imaging, which is achieved by receiving thermoelastically induced ultrasound signal triggered by an ultrashort laser pulse. The photoacoustic (PA) images reconstructed from the raw PA signals usually utilize conventional reconstruction algorithms, e.g. filtered back-projection. However, the performance of conventional reconstruction algorithms is usually limited by complex and uncertain physical parameters due to heterogeneous tissue structure. In recent years, deep learning has emerged to show great potential in the reconstruction problem. In this work, for the first time to our best knowledge, we propose to infuse the classical signal processing and certified knowledge into the deep learning for PA imaging reconstruction. Specifically, we make these contributions to propose a novel Knowledge Infusion Generative Adversarial Network (Ki-GAN) architecture that combines conventional delay-and-sum algorithm to reconstruct PA image. We train the network on a public clinical database. Our method shows better image reconstruction performance in cases of both full-sampled data and sparse-sampled data compared with state-of-the-art methods. Lastly, our proposed approach also shows high potential for other imaging modalities beyond PACT.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages273-281
Number of pages9
ISBN (Print)9783030322380
DOIs
Publication statusPublished - 2019
Externally publishedYes
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11764 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period13/10/1917/10/19

Keywords

  • Generative adversarial network
  • Knowledge infusion
  • Photoacoustic computed tomography
  • Reconstruction

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Ki-GAN: Knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo'. Together they form a unique fingerprint.

Cite this