@inproceedings{64b542ec90874a8581a24aa08ca94e88,
title = "Ki-GAN: Knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo",
abstract = "Photoacoustic computed tomography (PACT) breaks through the depth restriction in optical imaging, and the contrast restriction in ultrasound imaging, which is achieved by receiving thermoelastically induced ultrasound signal triggered by an ultrashort laser pulse. The photoacoustic (PA) images reconstructed from the raw PA signals usually utilize conventional reconstruction algorithms, e.g. filtered back-projection. However, the performance of conventional reconstruction algorithms is usually limited by complex and uncertain physical parameters due to heterogeneous tissue structure. In recent years, deep learning has emerged to show great potential in the reconstruction problem. In this work, for the first time to our best knowledge, we propose to infuse the classical signal processing and certified knowledge into the deep learning for PA imaging reconstruction. Specifically, we make these contributions to propose a novel Knowledge Infusion Generative Adversarial Network (Ki-GAN) architecture that combines conventional delay-and-sum algorithm to reconstruct PA image. We train the network on a public clinical database. Our method shows better image reconstruction performance in cases of both full-sampled data and sparse-sampled data compared with state-of-the-art methods. Lastly, our proposed approach also shows high potential for other imaging modalities beyond PACT.",
keywords = "Generative adversarial network, Knowledge infusion, Photoacoustic computed tomography, Reconstruction",
author = "Hengrong Lan and Kang Zhou and Changchun Yang and Jun Cheng and Jiang Liu and Shenghua Gao and Fei Gao",
note = "Publisher Copyright: {\textcopyright} 2019, Springer Nature Switzerland AG.; 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 ; Conference date: 13-10-2019 Through 17-10-2019",
year = "2019",
doi = "10.1007/978-3-030-32239-7_31",
language = "English",
isbn = "9783030322380",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "273--281",
editor = "Dinggang Shen and Pew-Thian Yap and Tianming Liu and Peters, {Terry M.} and Ali Khan and Staib, {Lawrence H.} and Caroline Essert and Sean Zhou",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings",
address = "Germany",
}