TY - GEN
T1 - Hierarchical ConViT with Attention-Based Relational Reasoner for Visual Analogical Reasoning
AU - He, Wentao
AU - Zhang, Jialu
AU - Ren, Jianfeng
AU - Bai, Ruibin
AU - Jiang, Xudong
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Raven’s Progressive Matrices (RPMs) have been widely used to evaluate the visual reasoning ability of humans. To tackle the challenges of visual perception and logic reasoning on RPMs, we propose a Hierarchical ConViT with Attention-based Relational Reasoner (HCV-ARR). Traditional solution methods often apply relatively shallow convolution networks to visually perceive shape patterns in RPM images, which may not fully model the long-range dependencies of complex pattern combinations in RPMs. The proposed ConViT consists of a convolutional block to capture the low-level attributes of visual patterns, and a transformer block to capture the high-level image semantics such as pattern formations. Furthermore, the proposed hierarchical ConViT captures visual features from multiple receptive fields, where the shallow layers focus on the image fine details while the deeper layers focus on the image semantics. To better model the underlying reasoning rules embedded in RPM images, an Attention-based Relational Reasoner (ARR) is proposed to establish the underlying relations among images. The proposed ARR well exploits the hidden relations among question images through the developed element-wise attentive reasoner. Experimental results on three RPM datasets demonstrate that the proposed HCV-ARR achieves a significant performance gain compared with the state-of-the-art models. The source code is available at: https://github.com/wentaoheunnc/HCV-ARR.
AB - Raven’s Progressive Matrices (RPMs) have been widely used to evaluate the visual reasoning ability of humans. To tackle the challenges of visual perception and logic reasoning on RPMs, we propose a Hierarchical ConViT with Attention-based Relational Reasoner (HCV-ARR). Traditional solution methods often apply relatively shallow convolution networks to visually perceive shape patterns in RPM images, which may not fully model the long-range dependencies of complex pattern combinations in RPMs. The proposed ConViT consists of a convolutional block to capture the low-level attributes of visual patterns, and a transformer block to capture the high-level image semantics such as pattern formations. Furthermore, the proposed hierarchical ConViT captures visual features from multiple receptive fields, where the shallow layers focus on the image fine details while the deeper layers focus on the image semantics. To better model the underlying reasoning rules embedded in RPM images, an Attention-based Relational Reasoner (ARR) is proposed to establish the underlying relations among images. The proposed ARR well exploits the hidden relations among question images through the developed element-wise attentive reasoner. Experimental results on three RPM datasets demonstrate that the proposed HCV-ARR achieves a significant performance gain compared with the state-of-the-art models. The source code is available at: https://github.com/wentaoheunnc/HCV-ARR.
UR - http://www.scopus.com/inward/record.url?scp=85150326245&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85150326245
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 22
EP - 30
BT - AAAI-23 Technical Tracks 1
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI Press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -