Heterogeneous Flight Management System (FMS) Design for Unmanned Aerial Vehicles (UAVs): Current Stages, Challenges, and Opportunities

Gelin Wang, Chunyang Gu, Jing Li, Jiqiang Wang, Xinmin Chen, He Zhang

    Research output: Journal PublicationReview articlepeer-review

    3 Citations (Scopus)

    Abstract

    In the Machine Learning (ML) era, faced with challenges, including exponential multi-sensor data, an increasing number of actuators, and data-intensive algorithms, the development of Unmanned Aerial Vehicles (UAVs) is standing on a new footing. In particular, the Flight Management System (FMS) plays an essential role in UAV design. However, the trade-offs between performance and SWaP-C (Size, Weight, Power, and Cost) and reliability–efficiency are challenging to determine for such a complex system. To address these issues, the identification of a successful approach to managing heterogeneity emerges as the critical question to be answered. This paper investigates Heterogeneous Computing (HC) integration in FMS in the UAV domain from academia to industry. The overview of cross-layer FMS design is firstly described from top–down in the abstraction layer to left–right in the figurative layer. In addition, the HC advantages from Light-ML, accelerated Federated Learning (FL), and hardware accelerators are highlighted. Accordingly, three distinct research focuses detailed with visual-guided landing, intelligent Fault Diagnosis and Detection (FDD), and controller-embeddable Power Electronics (PE) to distinctly illustrate advancements of the next-generation FMS design from sensing, and computing, to driving. Finally, recommendations for future research and opportunities are discussed. In summary, this article draws a road map that considers the heterogeneous advantages to conducting the Flight-Management-as-a-Service (FMaaS) platform for UAVs.

    Original languageEnglish
    Article number380
    JournalDrones
    Volume7
    Issue number6
    DOIs
    Publication statusPublished - Jun 2023

    Keywords

    • flight management system
    • heterogeneous computing
    • SWaP-C
    • UAV

    ASJC Scopus subject areas

    • Control and Systems Engineering
    • Information Systems
    • Aerospace Engineering
    • Computer Science Applications
    • Artificial Intelligence

    Fingerprint

    Dive into the research topics of 'Heterogeneous Flight Management System (FMS) Design for Unmanned Aerial Vehicles (UAVs): Current Stages, Challenges, and Opportunities'. Together they form a unique fingerprint.

    Cite this