TY - GEN
T1 - Graph-oriented learning via automatic group sparsity for data analysis
AU - Fang, Yuqiang
AU - Wang, Ruili
AU - Dai, Bin
PY - 2012
Y1 - 2012
N2 - The key task in graph-oriented learning is constructing an informative graph to model the geometrical and discriminant structure of a data manifold. Since traditional graph construction methods are sensitive to noise and less datum-adaptive to changes in density, a new graph construction method so-called ℓ1-Graph has been proposed [1] recently. A graph construction method needs to have two important properties: sparsity and locality. However, the ℓ1-Graph is strong in sparsity property, but weak in locality. In order to overcome such limitation, we propose a new method of constructing an informative graph using automatic group sparse regularization based on the work of ℓ1-Graph, which is called as group sparse graph (GroupSp-Graph). The newly developed GroupSp-Graph has the same noise-insensitive property as ℓ1-Graph, and also can successively preserve the group and local information in the graph. In other words, the proposed group sparse graph has both properties of sparsity and locality simultaneously. Furthermore, we integrate the proposed graph with several graph-oriented learning algorithms: spectral embedding, spectral clustering, subspace learning and manifold regularized non-negative matrix factorization. The empirical studies on benchmark data sets show that the proposed algorithms achieve considerable improvement over classic graph constructing methods and the ℓ1-Graph method in various learning tasks.
AB - The key task in graph-oriented learning is constructing an informative graph to model the geometrical and discriminant structure of a data manifold. Since traditional graph construction methods are sensitive to noise and less datum-adaptive to changes in density, a new graph construction method so-called ℓ1-Graph has been proposed [1] recently. A graph construction method needs to have two important properties: sparsity and locality. However, the ℓ1-Graph is strong in sparsity property, but weak in locality. In order to overcome such limitation, we propose a new method of constructing an informative graph using automatic group sparse regularization based on the work of ℓ1-Graph, which is called as group sparse graph (GroupSp-Graph). The newly developed GroupSp-Graph has the same noise-insensitive property as ℓ1-Graph, and also can successively preserve the group and local information in the graph. In other words, the proposed group sparse graph has both properties of sparsity and locality simultaneously. Furthermore, we integrate the proposed graph with several graph-oriented learning algorithms: spectral embedding, spectral clustering, subspace learning and manifold regularized non-negative matrix factorization. The empirical studies on benchmark data sets show that the proposed algorithms achieve considerable improvement over classic graph constructing methods and the ℓ1-Graph method in various learning tasks.
KW - Graph learning
KW - Non-negative matrix factorization
KW - Sparse representation
KW - Spectral embedding
KW - Subspace learning
UR - http://www.scopus.com/inward/record.url?scp=84874065221&partnerID=8YFLogxK
U2 - 10.1109/ICDM.2012.82
DO - 10.1109/ICDM.2012.82
M3 - Conference contribution
AN - SCOPUS:84874065221
SN - 9780769549057
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 251
EP - 259
BT - Proceedings - 12th IEEE International Conference on Data Mining, ICDM 2012
T2 - 12th IEEE International Conference on Data Mining, ICDM 2012
Y2 - 10 December 2012 through 13 December 2012
ER -