TY - GEN
T1 - Fuzzy C-means-based scenario bundling for stochastic service network design
AU - Jiang, Xiaoping
AU - Bai, Ruibin
AU - Aickelin, Uwe
AU - Landa-Silva, Dario
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - Stochastic service network designs with uncertain demand represented by a set of scenarios can be modelled as a large-scale two-stage stochastic mixed-integer program (SMIP). The progressive hedging algorithm (PHA) is a decomposition method for solving the resulting SMIP. The computational performance of the PHA can be greatly enhanced by decomposing according to scenario bundles instead of individual scenarios. At the heart of bundle-based decomposition is the method for grouping the scenarios into bundles. In this paper, we present a fuzzy c-means-based scenario bundling method to address this problem. Rather than full membership of a bundle, which is typically the case in existing scenario bundling strategies such as k-means, a scenario has partial membership in each of the bundles and can be assigned to more than one bundle in our method. Since the multiple bundle membership of a scenario induces overlap between the bundles, we empirically investigate whether and how the amount of overlap controlled by a fuzzy exponent would affect the performance of the PHA. Experimental results for a less-than-truckload transportation network optimization problem show that the number of iterations required by the PHA to achieve convergence reduces dramatically with large fuzzy exponents, whereas the computation time increases significantly. Experimental studies were conducted to find out a good fuzzy exponent to strike a trade-off between the solution quality and the computational time.
AB - Stochastic service network designs with uncertain demand represented by a set of scenarios can be modelled as a large-scale two-stage stochastic mixed-integer program (SMIP). The progressive hedging algorithm (PHA) is a decomposition method for solving the resulting SMIP. The computational performance of the PHA can be greatly enhanced by decomposing according to scenario bundles instead of individual scenarios. At the heart of bundle-based decomposition is the method for grouping the scenarios into bundles. In this paper, we present a fuzzy c-means-based scenario bundling method to address this problem. Rather than full membership of a bundle, which is typically the case in existing scenario bundling strategies such as k-means, a scenario has partial membership in each of the bundles and can be assigned to more than one bundle in our method. Since the multiple bundle membership of a scenario induces overlap between the bundles, we empirically investigate whether and how the amount of overlap controlled by a fuzzy exponent would affect the performance of the PHA. Experimental results for a less-than-truckload transportation network optimization problem show that the number of iterations required by the PHA to achieve convergence reduces dramatically with large fuzzy exponents, whereas the computation time increases significantly. Experimental studies were conducted to find out a good fuzzy exponent to strike a trade-off between the solution quality and the computational time.
KW - fuzzy c-means
KW - progressive hedging
KW - service network design
KW - stochastic mixed-integer program
UR - http://www.scopus.com/inward/record.url?scp=85046076397&partnerID=8YFLogxK
U2 - 10.1109/SSCI.2017.8280905
DO - 10.1109/SSCI.2017.8280905
M3 - Conference contribution
AN - SCOPUS:85046076397
T3 - 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
SP - 1
EP - 8
BT - 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017
Y2 - 27 November 2017 through 1 December 2017
ER -