Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices

Ling Xin Yong, Joseph Sefton, Cindy Vallières, Graham Rance, Jordan Hill, Valentina Cuzzucoli Crucitti, Adam Dundas, Felicity Rose, Morgan Alexander, Ricky Wildman, Yinfeng He, Simon Avery, Derek J. Irvine

Research output: Journal PublicationArticlepeer-review

Abstract

This study reports the development of the first copolymer material that (i) is resistant to fungal attachment and hence biofilm formation, (ii) operates via a nonkilling mechanism, i.e., avoids the use of antifungal actives and the emergence of fungal resistance, (iii) exhibits sufficient elasticity for use in flexible medical devices, and (iv) is suitable for 3D printing (3DP), enabling the production of safer, personalized medical devices. Candida albicans (C. albicans) can form biofilms on in-dwelling medical devices, leading to potentially fatal fungal infections in the human host. Poly(dimethylsiloxane) (PDMS) is a common material used for the manufacture of medical devices, such as voice prostheses, but it is prone to microbial attachment. Therefore, to deliver a fungal-resistant polymer with key physical properties similar to PDMS (e.g., flexibility), eight homopolymers and 30 subsequent copolymers with varying glass transition temperatures (Tg) and fungal antiattachment properties were synthesized and their materials/processing properties studied. Of the copolymers produced, triethylene glycol methyl ether methacrylate (TEGMA) copolymerized with (r)-α-acryloyloxy-β,β-dimethyl-γ-butyrolactone (AODMBA) at a 40:60 copolymer ratio was found to be the most promising candidate by meeting all of the above criteria. This included demonstrating the capability to successfully undergo 3DP by material jetting, via the printing of a voice prosthesis valve-flap using the selected copolymer.
Original languageEnglish
Pages (from-to)54508–54519
JournalACS applied materials & interfaces
Volume16
Issue number40
DOIs
Publication statusPublished - 9 Oct 2024

Keywords

  • polymer chemistry
  • fungal adherence
  • additive manufacturing
  • high-throughput screening
  • medical device
  • bioassay development

Fingerprint

Dive into the research topics of 'Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices'. Together they form a unique fingerprint.

Cite this