TY - GEN
T1 - Freight vehicle travel time prediction using Gradient Boosting Regression Tree
AU - Li, Xia
AU - Bai, Ruibin
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2017/1/31
Y1 - 2017/1/31
N2 - Travel time prediction is important for freight transportation companies. Accurate travel time prediction can help these companies make better planning and task scheduling. For several reasons, most companies are not able to obtain traffic flow data from traffic management authorities, but a large amount of trajectory data were collected everyday which has not been fully utilised. In this study, we aim to fill this gap and performed travel time predictions for freight vehicles at individual level using Gradient Boosting Regression Tree (GBRT) models. All the features were extracted or composed from vehicles' temporally sparse trajectory data. Three routes were selected for the prediction experiments. Bayesian optimisation was adopted for model fitting while the results show that both pre-start (before trip starts) and post-start (after trip starts) predictions accuracies reach above 80%. The results also show that the prediction performance can be gradually improved by adding more mean speed estimates of traveled distance from the first 5 minutes as the real-time information. And the prediction performance can be further improved by about 2% by adding more mean speed estimates even if an unusual and non-recurring events occurred at a location of a route segment. This study shows the feasibility of both pre-start and continuous post-start prediction with limited amount of temporally sparse trajectory data for real-world practice.
AB - Travel time prediction is important for freight transportation companies. Accurate travel time prediction can help these companies make better planning and task scheduling. For several reasons, most companies are not able to obtain traffic flow data from traffic management authorities, but a large amount of trajectory data were collected everyday which has not been fully utilised. In this study, we aim to fill this gap and performed travel time predictions for freight vehicles at individual level using Gradient Boosting Regression Tree (GBRT) models. All the features were extracted or composed from vehicles' temporally sparse trajectory data. Three routes were selected for the prediction experiments. Bayesian optimisation was adopted for model fitting while the results show that both pre-start (before trip starts) and post-start (after trip starts) predictions accuracies reach above 80%. The results also show that the prediction performance can be gradually improved by adding more mean speed estimates of traveled distance from the first 5 minutes as the real-time information. And the prediction performance can be further improved by about 2% by adding more mean speed estimates even if an unusual and non-recurring events occurred at a location of a route segment. This study shows the feasibility of both pre-start and continuous post-start prediction with limited amount of temporally sparse trajectory data for real-world practice.
UR - http://www.scopus.com/inward/record.url?scp=85015414968&partnerID=8YFLogxK
U2 - 10.1109/ICMLA.2016.101
DO - 10.1109/ICMLA.2016.101
M3 - Conference contribution
AN - SCOPUS:85015414968
T3 - Proceedings - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016
SP - 1010
EP - 1015
BT - Proceedings - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016
Y2 - 18 December 2016 through 20 December 2016
ER -