TY - JOUR
T1 - Fracking wastewater treatment
T2 - Catalytic performance and life cycle environmental impacts of cerium-based mixed oxide catalysts for catalytic wet oxidation of organic compounds
AU - Ou, Xiaoxia
AU - Tomatis, Marco
AU - Payne, Billy
AU - Daly, Helen
AU - Chansai, Sarayute
AU - Fan, Xiaolei
AU - D'Agostino, Carmine
AU - Azapagic, Adisa
AU - Hardacre, Christopher
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2023/2/20
Y1 - 2023/2/20
N2 - Water scarcity and the consequent increase of freshwater prices are a cause for concern in regions where shale gas is being extracted via hydraulic fracturing. Wastewater treatment methods aimed at reuse/recycle of fracking wastewater can help reduce water stress of the fracking process. Accordingly, this study assessed the catalytic performance and life cycle environmental impacts of cerium-based mixed oxide catalysts for catalytic wet oxidation (CWO) of organic contaminants, in order to investigate their potential as catalysts for fracking wastewater treatment. For these purposes, MnCeOx and CuCeOx were tested for phenol removal in the presence of concentrated NaCl (200 g L−1), which represented a synthetic fracking wastewater. Removal of phenol in pure (“phenolic”) water without NaCl was also considered for comparison. Complete (100 %) phenol and a 94 % total organic carbon (TOC) removal were achieved in both the phenolic and fracking wastewaters by utilising MnCeOx (5 g L−1) and insignificant metal leaching was observed. However, a much lower activity was observed when the same amount of CuCeOx was utilised: 23.3 % and 20.5 % for phenol and TOC removals, respectively, in the phenolic, and 69.1 % and 63 % in the fracking wastewater. Furthermore, severe copper leaching from CuCeOx was observed during stability tests conducted in the fracking wastewater. A life cycle assessment (LCA) study carried out as part of this work showed that the production of MnCeOx had 12–98 % lower impacts than CuCeOx due to the higher impacts of copper than manganese precursors. Furthermore, the environmental impacts of CWO were found to be 94–99 % lower than those of ozonation due to lower energy and material requirements. Overall, the results of this study suggest that the adoption of catalytic treatment would improve both the efficiency and the environmental sustainability of both the fracking wastewater treatment and the fracking process as a whole.
AB - Water scarcity and the consequent increase of freshwater prices are a cause for concern in regions where shale gas is being extracted via hydraulic fracturing. Wastewater treatment methods aimed at reuse/recycle of fracking wastewater can help reduce water stress of the fracking process. Accordingly, this study assessed the catalytic performance and life cycle environmental impacts of cerium-based mixed oxide catalysts for catalytic wet oxidation (CWO) of organic contaminants, in order to investigate their potential as catalysts for fracking wastewater treatment. For these purposes, MnCeOx and CuCeOx were tested for phenol removal in the presence of concentrated NaCl (200 g L−1), which represented a synthetic fracking wastewater. Removal of phenol in pure (“phenolic”) water without NaCl was also considered for comparison. Complete (100 %) phenol and a 94 % total organic carbon (TOC) removal were achieved in both the phenolic and fracking wastewaters by utilising MnCeOx (5 g L−1) and insignificant metal leaching was observed. However, a much lower activity was observed when the same amount of CuCeOx was utilised: 23.3 % and 20.5 % for phenol and TOC removals, respectively, in the phenolic, and 69.1 % and 63 % in the fracking wastewater. Furthermore, severe copper leaching from CuCeOx was observed during stability tests conducted in the fracking wastewater. A life cycle assessment (LCA) study carried out as part of this work showed that the production of MnCeOx had 12–98 % lower impacts than CuCeOx due to the higher impacts of copper than manganese precursors. Furthermore, the environmental impacts of CWO were found to be 94–99 % lower than those of ozonation due to lower energy and material requirements. Overall, the results of this study suggest that the adoption of catalytic treatment would improve both the efficiency and the environmental sustainability of both the fracking wastewater treatment and the fracking process as a whole.
KW - Catalytic wet oxidation
KW - Cerium-based mixed oxide
KW - Environmental impacts
KW - Life cycle assessment
KW - Shale gas
KW - Wastewater treatment
UR - http://www.scopus.com/inward/record.url?scp=85143276782&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2022.160480
DO - 10.1016/j.scitotenv.2022.160480
M3 - Article
C2 - 36435262
AN - SCOPUS:85143276782
SN - 0048-9697
VL - 860
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 160480
ER -