Abstract
In this study, an earth levee model is constructed to investigate the impact of animal burrows on the integrity and performance of earthen structures. A series of centrifuge experiments are conducted on homogenous scaled-down 1H:1V levee models built from the natural Kasama soil. Both intact and deteriorated models were subject to a 35g acceleration level. Invasive animal intrusions were introduced in the form of horizontal array of idealized cylindrical burrows at the mid-height of the levee. The water level was gradually increased during the centrifuge flight, and the response of the levee was monitored throughout the test. Pore pressures were recorded using pressure transducers placed at preselected locations within the model. Surface displacements were measured using laser LVDTs and supplemented with three digital cameras for tracking the overall deformation pattern of the levee model. A summary of the test procedure and selected results is presented herewith. The observed deformation mechanism due to the presence of animal burrows is also described. As compared with the intact levee, the presence of burrows is found to alter the pattern of the water flow through the deteriorated levee structure—leading to a notable increase in the exit hydraulic gradient, internal erosion, and subsequently slope failure.
Original language | English |
---|---|
Pages (from-to) | 83-93 |
Number of pages | 11 |
Journal | Acta Geotechnica |
Volume | 11 |
Issue number | 1 |
Publication status | Published - Feb 2016 |
Externally published | Yes |
Keywords
- Animal burrows
- Centrifuge models
- Internal erosion
- Levee
- Seepage