Experimental discussions on operating frequencies of a bidirectional isolated DC-DC converter for a battery energy storage system

Nadia M.L. Tan, Takahiro Abe, Hirofumi Akagi

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

12 Citations (Scopus)

Abstract

This paper presents a high-efficiency bidirectional isolated dc-dc converter for a battery energy storage system connected to the grid. It discusses the design of the converter, an optimal operating frequency range, and the optimal dead times for a 6-kW, full-bridge, bidirectional isolated dc-dc converter with focus on improving converter efficiency. This paper also provides a power-loss breakdown of the dc-dc converter at the rated power. The optimal frequency range of the dc-dc converter is defined by making its frequency-dependent loss equal to its frequency-independent loss. The optimal dead time is defined by one-fourth of the resonant period. The maximum efficiency of the dc-dc converter operating at 4 kHz is measured at 98.1% during battery charging and at 98.2% during battery discharging. The converter maintains a high efficiency of more than 97% in a wide range of power transfer.

Original languageEnglish
Title of host publication2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013
Pages2333-2340
Number of pages8
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event5th Annual IEEE Energy Conversion Congress and Exhibition, ECCE 2013 - Denver, CO, United States
Duration: 15 Sept 201319 Sept 2013

Publication series

Name2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013

Conference

Conference5th Annual IEEE Energy Conversion Congress and Exhibition, ECCE 2013
Country/TerritoryUnited States
CityDenver, CO
Period15/09/1319/09/13

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Fuel Technology

Fingerprint

Dive into the research topics of 'Experimental discussions on operating frequencies of a bidirectional isolated DC-DC converter for a battery energy storage system'. Together they form a unique fingerprint.

Cite this