TY - JOUR
T1 - Enhanced kernel minimum squared error algorithm and its application in face recognition
AU - Zhao, Yingnan
AU - He, Xiangjian
AU - Chen, Beijing
AU - Zhao, Xiaoping
N1 - Publisher Copyright:
© 2016, Editorial Department of Journal of Southeast University. All right reserved.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - To improve the classification performance of the kernel minimum squared error (KMSE), an enhanced KMSE algorithm (EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix. Compared with the common methods, the new objective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE, some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification (CRC).
AB - To improve the classification performance of the kernel minimum squared error (KMSE), an enhanced KMSE algorithm (EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix. Compared with the common methods, the new objective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE, some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification (CRC).
KW - Face recognition
KW - Kernel minimum squared error
KW - Minimum squared error
KW - Pattern recognition
UR - http://www.scopus.com/inward/record.url?scp=84964319047&partnerID=8YFLogxK
U2 - 10.3969/j.issn.1003-7985.2016.01.007
DO - 10.3969/j.issn.1003-7985.2016.01.007
M3 - Article
AN - SCOPUS:84964319047
SN - 1003-7985
VL - 32
SP - 35
EP - 38
JO - Journal of Southeast University (English Edition)
JF - Journal of Southeast University (English Edition)
IS - 1
ER -