Effective heterointerface combination of 1D/2D Co-NiS/S-g-C3N4 heterojunction for boosting spatial charge separation with enhanced photocatalytic degradation of organic pollutants and disinfection of pathogens

Samar A. Abubshait, Shahid Iqbal, Haya A. Abubshait, Abeer A. AlObaid, Tahani I. Al-Muhimeed, Hisham S.M. Abd-Rabboh, Ali Bahadur, Wen Zhi Li

Research output: Journal PublicationArticlepeer-review

42 Citations (Scopus)

Abstract

The restricted visible light captivation and unwanted prompt recombination of photoinduced carriers remarkably hinder the activity of photocatalysts for the removal of organic pollutants. In this study, a new type heterojunction 1D/2D photocatalyst based on cobalt doped NiS nanorods (NRs) S-g-C3N4 nanosheets (NSs) was effectively fabricated by self-assembly technique, and its photocatalytic performance for methylene blue (MB) degradation and antibacterial activity under visible light were explored. The quick electron transport of S-g-C3N4 NSs and the compatible energy band positions of S-g-C3N4 and 4% Co-NiS NRs synergistic accelerate the separation and transmission of e- and h+ pairs across the Co-NiS/S-g-C3N4 heterointerface. The as-constructed heterostructures were assessed by cutting-edge analytical techniques such as SEM, XRD, EDX, FTIR, TEM, UV–vis, XPS, PL, transient photocurrent and BET. Additionally, this rational design enriches visible-light absorption and demonstrates a high BET surface area. Advantaging from the combing effect of 1D and 2D nanostructures, the 25% Co-NiS/S-g-C3N4 heterostructures achieve a significant photocatalytic MB removal rate of 98%, substantially enriched than that of undoped NiS NRs (32%), 4% Co-NiS NRs (55%) and S-g-C3N4 (29%). Simultaneously, the inherent photo-corrosion feature of S-g-C3N4 was stifled by concurrent coupling with Co-NiS NRs and modifying with Co, which was proved over a stability assessment with 6 repeated experimental results. Antibacterial activity of 25% 1D/2D Co-NiS/S-g-C3N4 nanocomposites (NCs) alongside four bacterial species was explored by irradiation of visible light. Our findings highlight the inordinate distinction of the successful heterointerface coupling of Co-NiS/S-g-C3N4 1D/2D heterojunction as a potential photocatalyst system for boosted photocatalytic removal of MB and decontamination of pathogens.

Original languageEnglish
Article number127390
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
Volume628
DOIs
Publication statusPublished - 5 Nov 2021
Externally publishedYes

Keywords

  • Carbon nitride, removal of pollutants
  • Co-doped, 1D/2D heterojunction
  • Synergism
  • Well-defined heterointerface

ASJC Scopus subject areas

  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Effective heterointerface combination of 1D/2D Co-NiS/S-g-C3N4 heterojunction for boosting spatial charge separation with enhanced photocatalytic degradation of organic pollutants and disinfection of pathogens'. Together they form a unique fingerprint.

Cite this