TY - JOUR
T1 - Effect of temperature and reaction time on the morphology of L-cysteine surface capped chalcocite (Cu2S) snowflakes dendrites nanoleaves and photodegradation study of methyl orange dye under visible light
AU - Iqbal, Shahid
AU - Bahadur, Ali
AU - Anwer, Shoaib
AU - Ali, Shahid
AU - Irfan, Rana Muhammad
AU - Li, Hao
AU - Shoaib, Muhammad
AU - Raheel, Muhammad
AU - Anjum, Tehseen Ali
AU - Zulqarnain, Muhammad
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/9/20
Y1 - 2020/9/20
N2 - Template-free, the facile hydrothermal route was used for the synthesis of pure self-assembled L-cysteine stabilized chalcocite nanoleaves (Cu2S@L-Cys NLs) with the best control of size, phase purity structure, morphology, and electrochemical properties. Effect of temperature (100–180 °C) and reaction time (8−24 h) were studied on the morphology of chalcocite Cu2S@L-Cys NLs snowflakes dendrites. By changing these factors, different morphologies such as irregular, regular, trigonal, hexagonal nanoleaf, and snowflakes dendrites like shapes were observed. Cu2S@L-Cys NLs were fabricated by using ethylenediamine (EDA) as a solvent. The photocatalytic performances of as-prepared Cu2S@L-Cys snowflake dendrites (NL3) and Cu2S@L-Cys irregular hexagram (NL4) in the degradation of methyl orange (MO) were examined under visible light. The noteworthy, unique bandgap (Cu2S@L-Cys snowflake dendrites NLs (1.55 eV) and Cu2S@L-Cys irregular hexagram NLs (1.58 eV) and the special morphology of Cu2S@L-Cys NLs increases the active sites for adsorption of dye, which causes extraordinary degradation activity. Furthermore, the L-cysteine (L-Cys) protective layer could efficiently alleviate the photocorrosion of Cu2S, giving rise to excellent stability. Cu2S@L-Cys NLs were reused successfully for photodegradation of dye due to the recycling ability of Cu2S@L-Cys NLs. The Cu2S@L-Cys snowflake dendrites NLs showed improved photocatalytic activity as compared to Cu2S@L-Cys irregular hexagram NLs. The improved surface area of Cu2S@L-Cys snowflake dendrites NLs, compared to that of the Cu2S@L-Cys irregular hexagram NLs, may be ascribed to the fact that snowflakes dendrites can support the growth and more surface-active sites of Cu2S@L-Cys. These results strongly suggest that the Cu2S@L-Cys snowflake dendrites are promising candidates for photocatalytic dye degradation.
AB - Template-free, the facile hydrothermal route was used for the synthesis of pure self-assembled L-cysteine stabilized chalcocite nanoleaves (Cu2S@L-Cys NLs) with the best control of size, phase purity structure, morphology, and electrochemical properties. Effect of temperature (100–180 °C) and reaction time (8−24 h) were studied on the morphology of chalcocite Cu2S@L-Cys NLs snowflakes dendrites. By changing these factors, different morphologies such as irregular, regular, trigonal, hexagonal nanoleaf, and snowflakes dendrites like shapes were observed. Cu2S@L-Cys NLs were fabricated by using ethylenediamine (EDA) as a solvent. The photocatalytic performances of as-prepared Cu2S@L-Cys snowflake dendrites (NL3) and Cu2S@L-Cys irregular hexagram (NL4) in the degradation of methyl orange (MO) were examined under visible light. The noteworthy, unique bandgap (Cu2S@L-Cys snowflake dendrites NLs (1.55 eV) and Cu2S@L-Cys irregular hexagram NLs (1.58 eV) and the special morphology of Cu2S@L-Cys NLs increases the active sites for adsorption of dye, which causes extraordinary degradation activity. Furthermore, the L-cysteine (L-Cys) protective layer could efficiently alleviate the photocorrosion of Cu2S, giving rise to excellent stability. Cu2S@L-Cys NLs were reused successfully for photodegradation of dye due to the recycling ability of Cu2S@L-Cys NLs. The Cu2S@L-Cys snowflake dendrites NLs showed improved photocatalytic activity as compared to Cu2S@L-Cys irregular hexagram NLs. The improved surface area of Cu2S@L-Cys snowflake dendrites NLs, compared to that of the Cu2S@L-Cys irregular hexagram NLs, may be ascribed to the fact that snowflakes dendrites can support the growth and more surface-active sites of Cu2S@L-Cys. These results strongly suggest that the Cu2S@L-Cys snowflake dendrites are promising candidates for photocatalytic dye degradation.
KW - Dye degradation
KW - Morphology controlled
KW - Nanosheet
KW - Photocatalyst
KW - Snowflakes dendrites
UR - http://www.scopus.com/inward/record.url?scp=85085515469&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfa.2020.124984
DO - 10.1016/j.colsurfa.2020.124984
M3 - Article
AN - SCOPUS:85085515469
SN - 0927-7757
VL - 601
JO - Colloids and Surfaces A: Physicochemical and Engineering Aspects
JF - Colloids and Surfaces A: Physicochemical and Engineering Aspects
M1 - 124984
ER -