TY - JOUR
T1 - Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applications
AU - Iqbal, Shahid
AU - Bahadur, Ali
AU - Ali, Shahid
AU - Ahmad, Zahoor
AU - Javed, Mohsin
AU - Irfan, Rana Muhammad
AU - Ahmad, Naveed
AU - Qamar, Muhammad Azam
AU - Liu, Guocong
AU - Akbar, Muhammad Bilal
AU - Nawaz, Muhammad
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/3/25
Y1 - 2021/3/25
N2 - The heterojunctions formed at the interfaces between the metal oxide and graphitic carbon nitride (g-C3N4) play a critical role in photocatalytic reactions. Herein, we synthesized a series of heterostructures by the integration of 7% Ag-decorated ZnO nanocomposite (NC) with different contents (3.5–75 wt%) of sulphur-doped graphitic carbon nitride (S-g-C3N4). A unique heterostructure formed between Ag/ZnO and S-g-C3N4 generates a vast number of heterojunctions and abundant catalytic active sites for photocatalytic degradation. The material characterization was performed by XRD, SEM, TEM, XPS, FTIR, UV-Vis spectroscopy, BET surface area, and transient photocurrent response. The as-synthesized 7% Ag/ZnO NC showed maximum methylene blue (MB) degradation among the series (0–9%) under visible irradiation. Interestingly, the 25% Ag/ZnO/S-g-C3N4 heterostructure exhibited a significant increase in photodegradation of MB and 98% dye degraded in only 60 min, which was degraded up to 59% by 7% Ag/ZnO NC. Moreover, the photo-corrosion of ZnO NPs was inhibited by simultaneous doping with Ag and coupling with S-g-C3N4, which was verified through cyclic photo-degradation with six consecutive dye degradation tests. The synergistic effects of the Ag/ZnO/S-g-C3N4 heterojunction, enhanced photocatalytic activity, and photo-corrosion resistance were demonstrated successfully.
AB - The heterojunctions formed at the interfaces between the metal oxide and graphitic carbon nitride (g-C3N4) play a critical role in photocatalytic reactions. Herein, we synthesized a series of heterostructures by the integration of 7% Ag-decorated ZnO nanocomposite (NC) with different contents (3.5–75 wt%) of sulphur-doped graphitic carbon nitride (S-g-C3N4). A unique heterostructure formed between Ag/ZnO and S-g-C3N4 generates a vast number of heterojunctions and abundant catalytic active sites for photocatalytic degradation. The material characterization was performed by XRD, SEM, TEM, XPS, FTIR, UV-Vis spectroscopy, BET surface area, and transient photocurrent response. The as-synthesized 7% Ag/ZnO NC showed maximum methylene blue (MB) degradation among the series (0–9%) under visible irradiation. Interestingly, the 25% Ag/ZnO/S-g-C3N4 heterostructure exhibited a significant increase in photodegradation of MB and 98% dye degraded in only 60 min, which was degraded up to 59% by 7% Ag/ZnO NC. Moreover, the photo-corrosion of ZnO NPs was inhibited by simultaneous doping with Ag and coupling with S-g-C3N4, which was verified through cyclic photo-degradation with six consecutive dye degradation tests. The synergistic effects of the Ag/ZnO/S-g-C3N4 heterojunction, enhanced photocatalytic activity, and photo-corrosion resistance were demonstrated successfully.
KW - Ag-decorated
KW - Carbon nitride
KW - Heterostructure
KW - Nanocomposites
KW - Synergistic effect
KW - ZnO
UR - http://www.scopus.com/inward/record.url?scp=85098067027&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2020.158338
DO - 10.1016/j.jallcom.2020.158338
M3 - Article
AN - SCOPUS:85098067027
SN - 0925-8388
VL - 858
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 158338
ER -